精英家教網 > 初中數學 > 題目詳情

【題目】在平面直角坐標系中,拋物線y=﹣ax2+2ax+cx軸相交于A(﹣1,0)、B兩點(A點在B點左側),與y軸相交于點C0,3),點D是拋物線的頂點.

1)如圖1,求拋物線的解析式;

2)如圖1,點F0,b)在y軸上,連接AF,點Q是線段AF上的一個動點,P是第一象限拋物線上的一個動點,當b=﹣時,求四邊形CQBP面積的最大值與點P的坐標;

3)如圖2,點C1與點C關于拋物線對稱軸對稱.將拋物線y沿直線AD平移,平移后的拋物線記為y1,y1的頂點為D1,將拋物線y1沿x軸翻折,翻折后的拋物線記為y2,y2的頂點為D2.在(2)的條件下,點P平移后的對應點為P1,在平移過程中,是否存在以P1D2為腰的等腰△C1P1D2,若存在請直接寫出點D2的橫坐標,若不存在請說明理由.

【答案】1y=﹣x2+2x+3;(2)當m時,S四邊形CQBP取得最大值,此時P點坐標為(,);(3)存在,滿足要求的D2的橫坐標有:,,,

【解析】

1)將A、C兩點坐標代入拋物線解析式當中求出ac的值即可;

2)先求出B、F坐標,然后可以證明AFBC平行,于是△QBC的面積就等于△ABC的面積,問題就轉化為求△PBC的面積的最大值,作PEy軸交直線BCE,設P點的橫坐標為未知數m,將E點坐標也用m表示,PE的長度用P、E縱坐標之差表示,于是△PBC的面積就可以表示成關于m的二次函數,通過配方法即可求出最值及P點坐標.

3)由于限定了以P1D2為腰,因此分兩大類分別列方程計算即可.

1)將A(﹣10)、C03)代入拋物線解析式得:

解得:,

∴拋物線的解析式為y=﹣x2+2x+3

2)如圖1,連接BC,AC,作PEy軸交BCE

∵y=﹣x2+2x+3=﹣x+1)(x3).

B3,0),

b=﹣,

F0,﹣),

,

AFBC

SQBCSABCABOC6,

BC兩點坐標可得直線BC的解析式為:y=﹣x+3,

Pm,﹣m2+2m+3),則Em,﹣m+3),

PEyPyE=﹣m2+4m

SPBCxBxC)(yPyE)=﹣m2+6m=﹣m2+,

S四邊形CQBPSQBC+SPBCSABC+SPBC=﹣m2+

∴當m時,S四邊形CQBP取得最大值,此時P點坐標為(,).

3)∵y=﹣x2+2x+3

D1,4),拋物線對稱軸為x1

C1C關于直線x1對稱,

C12,3),

A、D兩點坐標可求得直線AD的解析式為y2x+2,

D1m,2m+2),

P1m+2m+),D2m,﹣2m2),

,,

,

P1C1P1D2時,,解得

C1D2P1D2時,9m2+36m+54,解得,

綜上所述,滿足要求的D2的橫坐標有:,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,兩個三角形紙板,能完全重合,,,,將繞點從重合位置開始,按逆時針方向旋轉,邊,分別與,交于點,(點不與點,重合),點的內心,若,點運動的路徑為,則圖中陰影部分的面積為(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,頂點A(﹣1,0),C1,2),點FBC的中點,CDy軸交于點EAFBE交于點G.將正方形ABCD繞點O順時針旋轉,每次旋轉90°,則第99次旋轉結束時,點G的坐標為( 。

A.,B.(﹣,C.(﹣,D.,﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,平行四邊形ABCD的邊ABy軸上,點D44),cosBCD,若反比例函數yk≠0)的圖象經過平行四邊形對角線的交點E,則k的值為(

A.14B.7C.8D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2020年注定是不平凡的一年,新年伊始,一場突如其來的疫情席卷全國,全國人民萬眾一心,抗戰(zhàn)疫情.為了早日取得抗疫的勝利,各級政府、各大新聞媒體都加大了對防疫知識的宣傳.某校為了了解初一年級共480名同學對防疫知識的掌握情況,對他們進行了防疫知識測試.現隨機抽取甲、乙兩班各15名同學的測試成績(滿分100分)進行整理分析,過程如下:

(收集數據)

甲班15名學生測試成績分別為:78,83,899798,85,100,9487,90,93,9299,95;100

乙班15名學生測試成績中90≤x95的成績如下:91,92,9490,93

(整理數據):

班級

75≤x80

80≤x85

85≤x90

90≤x95

95≤x100

1

1

3

4

6

1

2

3

5

4

(分析數據):

班級

平均數

眾數

中位數

方差

92

a

93

47.3

90

87

b

50.2

(應用數據):

1)根據以上信息,可以求出:a_____分,b______分;

2)若規(guī)定測試成績92分及其以上為優(yōu)秀,請估計參加防疫知識測試的480名學生中成績?yōu)閮?yōu)秀的學生共有多少人;

3)根據以上數據,你認為哪個班的學生防疫測試的整體成績較好?請說明理由(一條理由即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】根據道路交通法規(guī)規(guī)定:普通橋梁一般限速40km/h.為了安全,交通部門在橋頭豎立警示牌:“請勿超速”,并監(jiān)測攝像系統(tǒng)監(jiān)控,如圖,在某直線公路L路橋段BC內限速40km/h,為了檢測車輛是否超速,在距離公路L500米旁的A處設立了觀測點,從觀測點A測得一小車從點B到達點C行駛了30秒鐘,已知∠ABL=45°,∠ACL=30°,此車超速了嗎?請說明理由.(參考數據:=1.41,=1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在5×5的網格中,橫、縱坐標均為整點的數叫做格點,例如(0,1)、B2,1)、C3,3)都是格點,現僅用無刻度的直尺在網格中做如下操作:

1)直接寫出點A關于點B旋轉180°后對應點M的坐標   ;

2)畫出線段BE,使BEAC,其中E是格點,并寫出點E的坐標   ;

3)找格點F,使∠EAF=∠CAB,畫出∠EAF,并寫出點F的坐標   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知等腰直角△ABC,∠C=90°AC=2,D為邊AC上一動點,連結BD,在射線BD上取一點E使BEBD=AB2.若點DA運動到C,則點E運動的路徑長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D

1)求拋物線的函數解析式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQCP,連接PQ,設CPm,CPQ的面積為S

①求S關于m的函數表達式;

②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案