【題目】如圖:點(diǎn)P是四邊形ABCD外接圓⊙O上的任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD,連接PA,PB,PC,若PA= ,求點(diǎn)A到PB和PC的距離之和AE+AF是多少?
【答案】
【解析】試題分析:
如圖,連接BO、CO,由已知條件易證∠AOB=∠BOC=∠COD=60°,從而可得∠APE=∠BPC=30°,∠APF=60°,結(jié)合AE⊥BP于點(diǎn)E,AF⊥PC于點(diǎn)F,在Rt△APE和Rt△AOF中,利用30°的銳角所對(duì)直角邊是斜邊的一半,和勾股定理可求得AE和AF的長,然后相加即可得到答案.
試題解析:
連接BO、CO,
∵AD是⊙O的直徑,AB=BC=CD,
∴,
∴∠AOB =∠COB =∠COD= 60°
∴∠APB =∠CPB =30°
∴∠CPA =∠APB +∠CPB =60°
∴∠PAF =30°
∵AE⊥PB,AF⊥PC
∴AE= ,PF= ,
∴AF=,
∴AE+AF = .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,點(diǎn)E是邊BC的中點(diǎn),AF∥ED,AE∥DF
(1)求證:四邊形AEDF為菱形;
(2)試探究:當(dāng)AB:BC= ,菱形AEDF為正方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E,F,連接PB,PD.若AE=2,PF=8.則圖中陰影部分的面積為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)畫出△ABC關(guān)于點(diǎn)O成中心對(duì)稱的圖形△A1B1C1;
(2) 將△A1B1C1沿y軸正方向平移5個(gè)單位得到△A2B2C2 ,畫出△A2B2C2;
(3)若△ABC與△A2B2C2 繞點(diǎn)P旋轉(zhuǎn)重合,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,延長AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠E=60°,AC=,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,△ABC中,AB=2,BC=4,D為BC邊上一點(diǎn),BD=1.
(1)求證:△ABD∽△CBA;
(2)在原圖上作DE∥AB交AC與點(diǎn)E,請(qǐng)直接寫出另一個(gè)與△ABD相似的三角形,并求出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD是中線,AC=BC,一個(gè)以點(diǎn)D為頂點(diǎn)的45°角繞點(diǎn)D旋轉(zhuǎn),使角的兩邊分別與AC、BC的延長線相交,交點(diǎn)分別為E、F,DF與AC交于點(diǎn)M,DE與BC交于點(diǎn)N。
(1)求證:△ADM∽△BND;
(2)在∠EDF繞點(diǎn)D旋轉(zhuǎn)的過程中:
①探究三條線段CD、CE、CF之間的數(shù)量關(guān)系,并說明理由;
②若CE=4,CF=2,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=x+b與x軸交于點(diǎn)A(2,0),P為y軸上B點(diǎn)下方一點(diǎn),以AP為腰作等腰直角三角形APM,點(diǎn)M落在第四象限,若PB=m(m>0),用含m的代數(shù)式表示點(diǎn)M的坐標(biāo)是( )
A.(m-2,m+4)B.(m+2,m+4)C.(m+2,-m-4)D.(m-2,-m-4)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com