【題目】如圖,在平面直角坐標系中,矩形的邊軸上,、的長分別是一元二次方程的兩個根,,邊軸于點,動點以每秒個單位長度的速度,從點出發(fā)沿折線段向點運動,運動的時間為秒,設(shè)與矩形重疊部分的面積為

1)求點的坐標;

2)求關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)在點的運動過程中,是否存在,使為等腰三角形?若存在,直接寫出點的坐標;若不存在,請說明理由.

【答案】123

【解析】

1)解方程求出x的值,由BC>AB,OA=2OB可得答案;

2)設(shè)BPy軸于點F,當0≤t≤2時,PE=t,由OBF∽△EPF

,即,據(jù)此得,根據(jù)面積公式可得此時解析式;當2<t<6時,AP=6-t,由OBF∽△ABP,即,據(jù)此得,根據(jù)三角形面積公式可得答案;

3)設(shè)P-2m),由B1,0),E0,4)知, ,再分三種情況列出方程求解可得.

1

,

,

,

,

,

四邊形是矩形,

的坐標為

2)設(shè)軸于點,

如圖1,當時,,

,

,

,即,

,

;

如圖2,當時,,

,

,即

,

綜上所述,

3)由題意知,當點上時,顯然不能構(gòu)成等腰三角形;

當點上運動時,設(shè),

,

, ,

①當時,,解得,

②當時,,解得

;

③當時,,解得

;

綜上,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校開發(fā)了“書畫、器樂、戲曲、棋類”四大類興趣課程.為了解全校學生對每類課程的選擇情況,隨機抽取了若干名學生進行調(diào)查(每人必選且只能選一類),先將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:

(1)本次隨機調(diào)查了多少名學生?

(2)補全條形統(tǒng)計圖中“書畫”、“戲曲”的空缺部分;

(3)若該校共有名學生,請估計全校學生選擇“戲曲”類的人數(shù);

(4)學校從這四類課程中隨機抽取兩類參加“全市青少年才藝展示活動”,用樹形圖或列表法求處恰好抽到“器樂”和“戲曲”類的概率.(書畫、器樂、戲曲、棋類可分別用字幕表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖數(shù)軸的A、BC三點所表示的數(shù)分別為a、bc.若|a﹣b|=3,|b﹣c|=5,且原點OA、B的距離分別為41,則關(guān)于O的位置,下列敘述何者正確?( 。

A. A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. C的右邊

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某貨運公司有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨29噸,2輛大貨車與6輛小貨車一次可以運貨31噸.

I.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸;

Ⅱ.目前有46.4噸貨物需要運輸,貨運公司擬安排大小貨車共10輛,全部貨物一次運完.其中每輛大貨車一次運貨花費500元,每輛小貨車一次運貨花費300元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明放學后從學;丶,出發(fā)分鐘時,同桌小強發(fā)現(xiàn)小明的數(shù)學作業(yè)卷忘記拿了,立即拿著數(shù)學作業(yè)卷按照同樣的路線去追趕小明,小強出發(fā)分鐘時,小明才想起沒拿數(shù)學作業(yè)卷,馬上以原速原路返回,在途中與小強相遇.兩人離學校的路程(米)與小強所用時間(分鐘)之間的函數(shù)圖象如圖所示.

1)求函數(shù)圖象中的值;

2)求小強的速度;

3)求線段的函數(shù)解析式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)和一次函數(shù)y=kx-1的圖象相交于Am,2m),B兩點.

1)求一次函數(shù)的表達式;

2)求出點B的坐標,并根據(jù)圖象直接寫出滿足不等式x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:到三角形的兩邊距離相等的點,叫做此三角形的準內(nèi)心.

1)求證:等腰三角形底邊的中點是它的準內(nèi)心;

2)如圖,在△ABC中,以AC為直徑作⊙OBC于點D,過點D作⊙O的切線EF,分別交ABAC的延長線于點E,F.若點D是△ABC的準內(nèi)心,AE6,tanCFD,求EB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60 n mile的小島A出發(fā),沿正南方向航行一段時間后,到達位于燈塔C的南偏東45°方向上的B處,這時輪船B與小島A的距離是( )

A. n mileB.60 n mileC.120 n mileD.n mile

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直徑,平分,交弦于點,連接半徑于點,過點的一條直線交的延長線于點

1)求證:直線的切線;

2)若

①求的長;

②求的周長.(結(jié)果可保留根號)

查看答案和解析>>

同步練習冊答案