【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個(gè)動點(diǎn),連EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到MC,連DM,則在點(diǎn)E運(yùn)動過程中,DM的最小值是。
【答案】1.5
【解析】解:如圖,取AC的中點(diǎn)G,連接EG,
∵旋轉(zhuǎn)角為60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等邊△ABC的對稱軸,
∴CD= BC,
∴CD=CG,
又∵CE旋轉(zhuǎn)到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根據(jù)垂線段最短,EG⊥AD時(shí),EG最短,即DF最短,
此時(shí)∵∠CAD= ×60°=30°,AG= AC= ×6=3,
∴EG= AG= ×3=1.5,
∴DF=1.5.
所以答案是:1.5.
【考點(diǎn)精析】利用垂線段最短和等邊三角形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用;等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上的A、B、C、D四點(diǎn)所表示的數(shù)分別是a、b、c、d,且(a+16)2+(d+12)2=﹣|b﹣8|﹣|c﹣10|.
(1)求a、b、c、d的值;
(2)點(diǎn)A,B沿?cái)?shù)軸同時(shí)出發(fā)相向勻速運(yùn)動,4秒后兩點(diǎn)相遇,點(diǎn)B的速度為每秒2個(gè)單位長度,求點(diǎn)A的運(yùn)動速度;
(3)A,B兩點(diǎn)以(2)中的速度從起始位置同時(shí)出發(fā),向數(shù)軸正方向運(yùn)動,與此同時(shí),C點(diǎn)以每秒1個(gè)單位長度的速度向數(shù)軸正方向開始運(yùn)動,若t秒時(shí)有2AB=CD,求t的值;
(4)A,B兩點(diǎn)以(2)中的速度從起始位置同時(shí)出發(fā),相向而行當(dāng)A點(diǎn)運(yùn)動到C點(diǎn)時(shí),迅速以原來速度的2倍返回,到達(dá)出發(fā)點(diǎn)后,保持改變后的速度又折返向C點(diǎn)運(yùn)動;當(dāng)B點(diǎn)運(yùn)動到A點(diǎn)的起始位置后停止運(yùn)動.當(dāng)B點(diǎn)停止運(yùn)動時(shí),A點(diǎn)也停止運(yùn)動.求在此過程中,A,B兩點(diǎn)同時(shí)到達(dá)的點(diǎn)在數(shù)軸上對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將兩塊三角板的直角頂點(diǎn)重合.
(1)寫出以C為頂點(diǎn)的相等的角;
(2)若∠ACB=150°,請直接寫出∠DCE的度數(shù);
(3)寫出∠ACB與∠DCE之間所具有的數(shù)量關(guān)系;
(4)當(dāng)三角板ACD繞點(diǎn)C旋轉(zhuǎn)時(shí),你所寫出的(3)中的關(guān)系是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,∠ABC=45°,點(diǎn)D是AC的中點(diǎn),連接BD,作AE⊥BC于E,交BD于點(diǎn)F,點(diǎn)G是BC的中點(diǎn),連接FG,過點(diǎn)B作BH⊥AB交FG的延長線于H.
(1)若AB=3,求AF的長;
(2)求證;BH+2CE=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,6).
(1)如圖①,過點(diǎn)A作AB⊥軸,垂足為B,則三角形AOB的面積為 ;
(2)如圖②,將線段OA向右平移3個(gè)單位長度,再向下平移1個(gè)單位長度,得到線段.
①求四邊形的面積;
②若P是射線OA上的一動點(diǎn),連接、,請畫出圖形,并直接寫出與,的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲布袋中有三個(gè)紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個(gè)白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機(jī)摸出一個(gè)紅球,小剛從乙袋中隨機(jī)摸出一個(gè)白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個(gè)球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個(gè)球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個(gè)游戲公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題.
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實(shí)上,小明的表示方法是有道理,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
請解答:(1)若的整數(shù)部分為,小數(shù)部分為,求的值.
(2)已知:,其中是整數(shù),且,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn)D.求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com