【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為邊AB中點,點E、F分別在射線CA、BC上,且AE=CF,連結EF.
猜想:如圖①,當點E、F分別在邊CA和BC上時,線段DE與DF的大小關系為________.
探究:如圖②,當點E、F分別在邊CA、BC的延長線上時,判斷線段DE與DF的大小關系,并加以證明.
應用:如圖②,若DE=4,利用探究得到的結論,求△DEF的面積.

【答案】猜想:DE=DF.
如圖1,連結CD,

∵∠ACB=90°,AC=BC,
∴∠CAD=45°,
∵D為邊AB的中點,
∴CD=AD,∠BCD= ∠ACB=45°,
∴∠EAD=∠FCD,
在△AED和△CFD中

∴△ADE≌△CFD(SAS),
∴DE=DF,
故答案為:DE=DF;
探究:DE=DF,證明如下:
如圖2,連接CD,

∵∠ACB=90°,AC=BC,
∴∠CAD=45°,
∵D為AB中點,
∴AD=CD,∠BCD= ∠ACB=45°,
∵∠CAD+∠EAD=∠BCD+∠FCD=180°,
∴∠EAD=∠FCD=135°,
在△ADE和△CDF中

∴△ADE≌△CDF(SAS),
∴DE=DF;
應用:
∵△ADE≌△CDF,
∴∠ADE=∠CDF,
∵∠ADC=90°,
∴∠EDF=90°,
∵DE=DF=4,
∴SDEF= DE2= ×42=8.
【解析】猜想:連接CD,可證明△ADE≌△CFD,可得出結論;探究:連接CD,同(1)可證明△ADE≌△CFD,可證得DE=DF;應用:由△ADE≌△CFD可證得∠EDF=90°,容易求得△DEF的面積.
【考點精析】本題主要考查了全等三角形的性質的相關知識點,需要掌握全等三角形的對應邊相等; 全等三角形的對應角相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣kx+k﹣1=0.
(1)求證:此一元二次方程恒有實數(shù)根.
(2)無論k為何值,該方程有一根為定值,請求出此方程的定值根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉動的轉盤被平均分成3個扇形,分別標有1、2、3三個數(shù)字,小王和小李各轉動一次轉盤為一次游戲,當每次轉盤停止后,指針所指扇形內的數(shù)為各自所得的數(shù),一次游戲結束得到一組數(shù)(若指針指在分界線時重轉).

(1)請你用樹狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結果;
(2)兩次轉盤,第一次轉得的數(shù)字記為m,第二次記為n,A的坐標為(m,n),則A點在函數(shù)y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A在函數(shù)y=﹣ (x<0)的圖象上,點B在函數(shù)y= (x>0)的圖象上,點C在x軸上.若四邊形OABC為平行四邊形,則△OBC的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,D、E分別為邊AB、BC的中點,點F在邊AC的延長線上,∠FEC=∠B,求證:四邊形CDEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點0是等邊△ABC內一點,∠AOB=110°,∠BOC=αOC=CD,

∠DOC=60°連接OD.

1)求證:△COD是等邊三角形

2)當α=150°時,試判斷△AOD的形狀,并說明理由

3)探究:當α為多少度時,△AOD是等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內角∠ABC、外角∠ACF.以下結論:

ADBC;②∠BDCBAC;③∠ADC90°-∠ABD; ④BD平分∠ADC

其中正確的結論有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,點P為BC邊中點,直線a繞頂點A旋轉,若點B,P在直線a的異側,BM⊥直線a于點M.CN⊥直線a于點N,連接PM,PN.

(1)延長MP交CN于點E(如圖2).

①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點A旋轉到圖3的位置時,點B,P在直線a的同側,其它條件不變,此時PM=PN還成立嗎?若成立,請給予證明;若不成立,請說明理由;

(3)若直線a繞點A旋轉到與BC邊平行的位置時,其它條件不變,請直接判斷四邊形MBCN的形狀及此時PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA垂直于弦BC,垂足為E,點D在CA的延長線上,若∠DAB+
∠AOB=60°

(1)求∠AOB的度數(shù);
(2)若AE=1,求BC的長.

查看答案和解析>>

同步練習冊答案