【題目】在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對(duì)知識(shí)進(jìn)行歸納和整理是改善學(xué)習(xí)的重要方法.善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組).一元一次不等式和一次函數(shù)后,對(duì)相關(guān)知識(shí)進(jìn)行了歸納整理.
(1)例如,他在同一個(gè)直角坐標(biāo)系中畫出了一次函數(shù)y=x+2和y=-x+4的圖像(如圖1),并作了歸納:
請(qǐng)根據(jù)圖1和以上方框中的內(nèi)容,在下面數(shù)字序號(hào)后寫出相應(yīng)的結(jié)論:
① ;② ;
③ ;④ ;
(2)若已知一次函數(shù)y=k1x+b1和y=kx+b的圖像(如圖2),且它們的交點(diǎn)C的坐標(biāo)為(1,3),那么不等式kx+b≥k1x+b1的解集 .
【答案】(1)①-x+4=0,②,③x+2 >0,④-x+4<0;(2)x≤1.
【解析】
(1)根據(jù)一元一次方程、一元一次不等式、一元一次不等式組與一次函數(shù)之間的關(guān)系,再結(jié)合函數(shù)圖像即可解答;
(2)不等式kx+b≥k1x+b1的解集就是y=kx+b的圖像位于y=k1x+b1上方的部分對(duì)應(yīng)的自變量的取值范圍.
解:(1)①由于點(diǎn)B是y=-x+4的圖像于x的交點(diǎn),則對(duì)應(yīng)方程為-x+4=0,故答案為-x+4=0;
①由于點(diǎn)C是一次函數(shù)y=x+2和y=-x+4的圖像于的交點(diǎn),則對(duì)應(yīng)方程組為,故答案為;
③函數(shù)y=x+2的函數(shù)值y大于0時(shí),即其解集為函數(shù)值大于0對(duì)應(yīng)的自變量的取值范圍,則對(duì)應(yīng)的不等式為x+2 >0,故答案為x+2 >0;
④函數(shù)y=-x+4的函數(shù)值y小于0時(shí),即其解集為函數(shù)值小于0對(duì)應(yīng)的自變量的取值范圍,則對(duì)應(yīng)的不等式為x+4<0,故答案為x+4<0;
(2)由它們的交點(diǎn)C的坐標(biāo)為(1,3),根據(jù)函數(shù)圖像可以確定kx+b≥k1x+b1的解集為x≤1,故答案為x≤1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法把二次函數(shù)y=l+2x-x2化為y=a(x-h)2+k的形式,作出它的草圖,回答下列問題.
(1)求拋物線的頂點(diǎn)坐標(biāo)和它與x軸的交點(diǎn)坐標(biāo);
(2)當(dāng)x取何值時(shí),y隨x的增大而增大?
(3)當(dāng)x取何值時(shí),y的值大于0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度分別沿A→B→C和A→D→C的路徑向點(diǎn)C運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),四邊形PBDQ的面積為y(單位:cm2),則y與x(0≤x≤8)之間的函數(shù)關(guān)系可用圖象表示為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2-x-3與x軸的交點(diǎn)為A、D(A在D的右側(cè)),與y軸的交點(diǎn)為C.
(1)直接寫出A、D、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為B,在拋物線上是否存在點(diǎn)P,使得以A、B、C、P四點(diǎn)為頂點(diǎn)的四邊形為梯形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一張對(duì)邊互相平行的紙條沿EF折疊,若∠EFB=32°,則①∠C′EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°;則下列結(jié)論正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,,在平面直角坐標(biāo)找一點(diǎn),使以,,,四點(diǎn)的四邊形為平行四邊形.
(1)在平面直角坐標(biāo)中描出符合條件的點(diǎn)位置.
(2)直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上,點(diǎn)A表示1,現(xiàn)將點(diǎn)A沿?cái)?shù)軸做如下移動(dòng),第一次點(diǎn)A向左移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A1,第二次將點(diǎn)A1向右移動(dòng)6個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A2,第三次將點(diǎn)A2向左移動(dòng)9個(gè)單位長(zhǎng)度到達(dá)點(diǎn)A3,按照這種規(guī)律下去,第n次移動(dòng)到點(diǎn)An,如果點(diǎn)An,與原點(diǎn)的距離不少于20,那么n的最小值是( )
A. 11B. 12C. 13D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)(1.6)+(- 2.7)+(- 2.3)+2.7
(2)
(3)-2+(-2)×3-(-8)
(4)(-24)×(-+-)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com