【題目】幾何計算
(1)如圖1,∠AOC,∠BOD都是直角,且∠AOB與∠AOD的度數(shù)比是2:11,求∠BOC的度數(shù).
(2)如圖2,點C分線段AB為3:4,AC<BC,點D分線段為AB上一點且11BD=3AD,若CD=10cm,求AB的長.
【答案】(1)70°;(2)28cm.
【解析】
(1)設∠AOB=2x°,∠AOD=11x°,根據(jù)∠AOD﹣∠AOB=90°得出方程11x﹣2x=90°,求出即可;
(2)先用AB表示出AC及AD的長,再根據(jù)CD=10cm可得出AB的長.
解:(1)設∠AOB=2x,則∠AOD=11x,
∵∠DOB=∠AOD﹣∠AOB=9x=90°,
∴x=10°,
∵∠COD+∠BOC=∠AOB+∠BOC=90°,
∴∠COD=2x=20°,
∴∠BOC=7x=70°;
(2)設AD=11xcm,則BD=3xcm,
∴AB=14xcm,
∵AC:CB=3:4,
∴AC=6x,CB=8x,
∴CD=8x﹣3x=5x,
∵CD=10cm,
∴x=2,
∴AB=14x=28.
科目:初中數(shù)學 來源: 題型:
【題目】已知從甲地到乙地,某船順水航行需2小時,逆水航行需3小時,
(1)設輪船在靜水中前進的速度是千米/時,水流的速度是y千米/時,則輪船共航行多少千米?
(2)如果輪船在靜水中前進的速度是60千米/時,則水流的速度是多少千米/時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.
(1)數(shù)軸上點B表示的數(shù)是 ,點P表示的數(shù)是 (用含t的代數(shù)式表示);
(2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:
①當點P運動多少秒時,點P與點Q相遇?
②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖像與反比例函數(shù)(k為常數(shù)且k≠0)的圖像交于A(-1,a),B(b,1)兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).當∠APB=45°時,PD的長是( );
A. B. C. D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條“折線數(shù)軸”.圖中點A表示-10,點B表示10,點C表示18,我們稱點A和點C 在數(shù)軸上相距 28 個長度單位,動點 P 從點 A 出發(fā), 以 2 單位/秒的速度沿著“折線數(shù)軸”的正方向運動,從點 O 運動到點 B 期間速度變?yōu)樵瓉淼囊话耄?/span> 點 P 從點 A 出發(fā)的同時,點 Q 從點 C 出發(fā),以 1 單位秒的速度沿著“折線數(shù)軸”的負方向運動,當 點 P 到達 B 點時,點 P、Q 均停止運動. 設運動的時間為 t 秒. 問:
(1)當 t=3s 時,點 P 和點 O 在數(shù)軸上相距 個長度單位; 當 t=7.5s 時,點 P 和點 O 在數(shù)軸上相距 個長度單位; 當 t=9s 時,點 P 和點 Q 在數(shù)軸上相距 個長度單位.
(2)當 P、Q 兩點相遇時,求出相遇時間及相遇點 M 所對應的數(shù)是多少?
(3)是否存在某一時刻使得 P、O 兩點在數(shù)軸上相距的長度與 Q、B 兩點在數(shù)軸上相距的長度相等? 若存在,請直接寫出 t 的取值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若點(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com