【題目】2018清明節(jié)前夕,宜賓某花店用1000元購進(jìn)若干菊花,很快售完,接著又用2500元購進(jìn)第二批

花,已知第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,且每朵花的進(jìn)價比第一批的進(jìn)價多元.

(1)第一批花每束的進(jìn)價是多少元.

(2)若第一批菊花按3元的售價銷售,要使總利潤不低于1500不考慮其他因素,第二批每朵菊花的售價至少是多少元?

【答案】(1)2元;(2)第二批花的售價至少為元;

【解析】

(1)設(shè)第一批花每束的進(jìn)價是x元,則第二批花每束的進(jìn)價是(x+0.5)元,根據(jù)數(shù)量=總價÷單價結(jié)合第二批所購花的數(shù)量是第一批所購花數(shù)的2倍,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗后即可得出結(jié)論;

(2)由第二批花的進(jìn)價比第一批的進(jìn)價多0.5元可求出第二批花的進(jìn)價,設(shè)第二批菊花的售價為m元,根據(jù)利潤=每束花的利潤×數(shù)量結(jié)合總利潤不低于1500元,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.

(1)設(shè)第一批花每束的進(jìn)價是x元,則第二批花每束的進(jìn)價是元,

根據(jù)題意得:

解得:,

經(jīng)檢驗:是原方程的解,且符合題意.

答:第一批花每束的進(jìn)價是2元.

(2)由可知第二批菊花的進(jìn)價為元.

設(shè)第二批菊花的售價為m元,

根據(jù)題意得:

解得:

答:第二批花的售價至少為元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是太陽能熱水器裝置的示意圖,利用玻璃吸熱管可以把太陽能轉(zhuǎn)化為熱能,玻璃吸熱管與太陽光線垂直時,吸收太陽能的效果最好,假設(shè)某用戶要求根據(jù)本地區(qū)冬至正午時刻太陽光線與地面水平線的夾角(θ)確定玻璃吸熱管的傾斜角(太陽光線與玻璃吸熱管垂直),請完成以下計算:如圖2,AB⊥BC,垂足為點B,CD∥AB,F(xiàn)G⊥DE,垂足為點G,若∠θ=37°50′,F(xiàn)G=30cm,CD=10cm,求CF的長(結(jié)果取整數(shù),參考數(shù)據(jù):sin37°50′≈0.6l,cos37°50′≈079,tan37°50′≈0.78)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力,增強保護(hù)漢字的意識,我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

8

3

35≤x<40

16

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(4)第510名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強兩名男同學(xué)能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A、B分別在x軸、y軸上,線段OA、OB的長(OA<OB)是方程組的解,點C是直線與直線AB的交點,點D在線段OC上,OD=

(1)求點C的坐標(biāo);

(2)求直線AD的解析式;

(3)P是直線AD上的點,在平面內(nèi)是否存在點Q,使以O、A、PQ為頂點的四邊形是菱形(鄰邊相等的平行四邊形)?若存在,請寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正方形AOBC各頂點的坐標(biāo)分別為A0,3),O0,0),B3,0),C33).若以原點為位似中心,將這個正方形的邊長縮小為原來的,則新正方形的中心的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中國制造”是世界上認(rèn)知度最高的標(biāo)簽之一,因此,我縣越來越多的群眾選擇購買國產(chǎn)空調(diào),已知購買1A型號的空調(diào)比1B型號的空調(diào)少200元,購買2A型號的空調(diào)與3B型號的空調(diào)共需11200元,求AB兩種型號的空調(diào)的購買價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的對角線AC、BD交于點OCEACAD邊的延長線交于點E

1)求證:四邊形BCED是平行四邊形;

2)延長DB至點F,聯(lián)結(jié)CF,若CF=BD,求∠BCF的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=120°,將ABC繞點A順時針旋轉(zhuǎn)一定角度(小于360°)得到B′AC′.

(1)若點B′落在線段AC上,在圖中畫出B′AC′,并直接寫出當(dāng)AC=4時,CC′的值;

(2)若∠ACB=20°,旋轉(zhuǎn)后,B′C′AC,請直接寫出旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A(,0),AB,AB=10,C0b,,b滿足.Pt,0)是線段AO上一點(不包含A,O

1)當(dāng)t=5時,求PBPC的值;

2)當(dāng)PC+PB最小時,求t的值;

3)請根據(jù)以上的啟發(fā),解決如下問題:正數(shù)m,n滿足m+n=10,且正數(shù)=,則正數(shù)的最小值=________.

查看答案和解析>>

同步練習(xí)冊答案