【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F(xiàn)分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長(zhǎng).

【答案】
(1)證明:∵AD⊥BC,

∴∠ADB=∠ADC=90°,

在△BDG和△ADC中,

,

∴△BDG≌△ADC,

∴BG=AC,∠BGD=∠C,

∵∠ADB=∠ADC=90°,E,F(xiàn)分別是BG,AC的中點(diǎn),

∴DE= BG=EG,DF= AC=AF,

∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,

∴∠EDG+∠FDA=90°,

∴DE⊥DF;


(2)解:∵AC=10,

∴DE=DF=5,

由勾股定理得,EF= =5


【解析】(1)證明△BDG≌△ADC,根據(jù)全等三角形的性質(zhì)、直角三角形的性質(zhì)證明;(2)根據(jù)直角三角形的性質(zhì)分別求出DE、DF,根據(jù)勾股定理計(jì)算即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念的相關(guān)知識(shí)可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過點(diǎn)M作直線分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列4×4網(wǎng)格圖都是由16個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有4個(gè)小正方形已涂上陰影,請(qǐng)?jiān)诳瞻仔≌叫沃,按下列要求涂上陰影?/span>
(1)在圖1中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)中心對(duì)稱圖形;
(2)在圖2中選取2個(gè)空白小正方形涂上陰影,使6個(gè)陰影小正方形組成一個(gè)軸對(duì)稱圖形,但不是中心對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+c過點(diǎn)(﹣2,2),(4,5),過定點(diǎn)F(0,2)的直線l:y=kx+2與拋物線交于A、B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),過點(diǎn)B作x軸的垂線,垂足為C.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)B在拋物線上運(yùn)動(dòng)時(shí),判斷線段BF與BC的數(shù)量關(guān)系(>、<、=),并證明你的判斷;
(3)P為y軸上一點(diǎn),以B、C、F、P為頂點(diǎn)的四邊形是菱形,設(shè)點(diǎn)P(0,m),求自然數(shù)m的值;
(4)若k=1,在直線l下方的拋物線上是否存在點(diǎn)Q,使得△QBF的面積最大?若存在,求出點(diǎn)Q的坐標(biāo)及△QBF的最大面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過三邊都不相等的三角形的一個(gè)頂點(diǎn)的線段把三角形分成兩個(gè)小三角形,如果其中一個(gè)是等腰三角形,另外一個(gè)三角形和原三角形相似,那么把這條線段定義為原三角形的“和諧分割線”.如圖,線段CD是△ABC的“和諧分割線”,△ACD為等腰三角形,△CBD和△ABC相似,∠A=46°,則∠ACB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長(zhǎng)線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長(zhǎng);
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義[x]表示不超過實(shí)數(shù)x的最大整數(shù),如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函數(shù)y=[x]的圖象如圖所示,則方程[x]= x2的解為( )#N.

A.0或
B.0或2
C.1或
D.
或﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自從湖南與歐洲的“湘歐快線”開通后,我省與歐洲各國(guó)經(jīng)貿(mào)往來日益頻繁,某歐洲客商準(zhǔn)備在湖南采購(gòu)一批特色商品,經(jīng)調(diào)查,用16000元采購(gòu)A型商品的件數(shù)是用7500元采購(gòu)B型商品的件數(shù)的2倍,一件A型商品的進(jìn)價(jià)比一件B型商品的進(jìn)價(jià)多10元.
(1)求一件A,B型商品的進(jìn)價(jià)分別為多少元?
(2)若該歐洲客商購(gòu)進(jìn)A,B型商品共250件進(jìn)行試銷,其中A型商品的件數(shù)不大于B型的件數(shù),且不小于80件.已知A型商品的售價(jià)為240元/件,B型商品的售價(jià)為220元/件,且全部售出.設(shè)購(gòu)進(jìn)A型商品m件,求該客商銷售這批商品的利潤(rùn)v與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)在(2)的條件下,歐洲客商決定在試銷活動(dòng)中每售出一件A型商品,就從一件A型商品的利潤(rùn)中捐獻(xiàn)慈善資金a元,求該客商售完所有商品并捐獻(xiàn)慈善資金后獲得的最大收益.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了解學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)部分學(xué)生進(jìn)行了跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

(1)李老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行
“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案