【題目】任何一個整數(shù)N,可以用一個多項式來表示:

,例如:325=3×102+2×10+5.

一個正兩位數(shù)的個位數(shù)字是x,十位數(shù)字是y.

(1)把這個兩位數(shù)的十位上的數(shù)字與個位上的數(shù)字交換位置得到一個新的兩位數(shù),試說明新數(shù)與原數(shù)的和能被11整除;

(2)試求出符合條件的所有兩位數(shù).

【答案】(1)所得的數(shù)與原數(shù)的和能被11整除(2)14、23、32、41

【解析】

(1)根據(jù)題意表示出新數(shù)與原數(shù);

(2)根據(jù)題意表示出,從而求得x+y=5,分析符合條件的x、y的值.

(1)根據(jù)題意得:10y+x+10x+y

=11(x+y),

則所得的數(shù)與原數(shù)的和能被11整除.

(2) 根據(jù)題意得:11(x+y)=55

所以x+y=5

因為0<x<5,0< y <5,且x、y為整數(shù)

所以符合條件的兩位數(shù)為14、23、32、41

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCEAFG=∠AGF;FAG2ACFBHCH.其中所有正確結(jié)論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】企業(yè)舉行愛心一日捐活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因為sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因為sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地當(dāng)α為銳角時有sin(180°+α)=﹣sinα,由此可知:sin240°=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x2|時,可令x+10x20,分別求得x=﹣1x2(稱﹣1,2分別為|x+1||x2|的零點值).在實數(shù)范圍內(nèi),零點值x=﹣1x2可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:①x<﹣1;②﹣1≤x2;③x≥2

從而化簡代數(shù)式|x+1|+|x2|可分以下3種情況:

①當(dāng)x<﹣1時,原式=﹣(x+1)﹣(x2)=﹣2x+1;

②當(dāng)﹣1≤x2時,原式=x+1﹣(x2)=3;

③當(dāng)x≥2時,原式=x+1+x22x1;

綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)當(dāng)x2時,|x2|   ;

2)根據(jù)材料中的方法化簡代數(shù)式|x+2|+|x4|;(寫出解答過程)

3)直接寫出|x1|4|x+1|的最大值   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒2個單位長度的速度由運動,同時,點Q從點B出發(fā)以每秒1個單位長度的速度由運動,當(dāng)點Q到達點APQ兩點停止運動,設(shè)運動時間為單位:秒

1)求時,求點P和點Q表示的有理數(shù);

2)求點P與點Q第一次重合時的t值;

3)當(dāng)t的值為多少時,點P表示的有理數(shù)與點Q表示的有理數(shù)距離是3個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABC=ACB,以AC為直徑的O分別交AB、BC于點M、N,點P在AB的延長線上,且CAB=2BCP.

(1)求證:直線CP是O的切線.

(2)若BC=2,sinBCP=,求點B到AC的距離.

(3)在第(2)的條件下,求ACP的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由“趙爽弦圖”變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2、S3.若S1+S2+S3=15,則S2的值是(

A. 5B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.

(1)求甲、乙兩種商品每件的進價分別是多少元?

(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案