【題目】為了解九年級學生的體能狀況,從我校九年級學生中隨機抽取部分學生進行八百米跑體能測試,測試結(jié)果分為A,B,C,D四個等級,請根據(jù)兩幅圖中的信息回答下列問題:
(1)求本次測試共調(diào)查了 名學生,補全條形統(tǒng)計圖;
(2)B等級人數(shù)對應扇形統(tǒng)計圖的圓心角的大小為 ;
(3)我校九年級共有2100名學生,請你估計九年級學生中體能測試結(jié)果為C等級的學生有多少人?
【答案】(1)200,見解析;(2)144°;(3)315人
【解析】
(1)根據(jù)A等級的學生數(shù)和所占的百分比可以求得本次調(diào)查的學生數(shù),然后即可求得D等級的人數(shù),進而將條形統(tǒng)計圖補充完整;
(2)根據(jù)(1)中的結(jié)果可以求得B等級人數(shù)對應扇形統(tǒng)計圖的圓心角的大小;
(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得九年級學生中體能測試結(jié)果為C等級的學生有多少人.
解:(1)本次測試共調(diào)查了:50÷25%=200(名),
故答案為:200;
D等級的學生有:200﹣50﹣80﹣30=40(名),
補全的條形統(tǒng)計圖如右圖所示;
(2)B等級人數(shù)對應扇形統(tǒng)計圖的圓心角的大小為:360°×=144°,
故答案為:144°;
(3)2100×=315(人),
答:九年級學生中體能測試結(jié)果為C等級的學生有315人.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形;延長交軸于點,作正方形;…,按照這樣的規(guī)律作正方形,則點的縱坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別是A(-1,0)、B(4,5),拋物線+b+c經(jīng)過A、B兩點
(1)求拋物線的解析式;
(2)點M是線段AB上的一點(不與A、B重合),過M作軸的垂線交拋物線與點N,求線段MN的最大值,并求出點M、N的坐標;
(3)在(2)的條件下,在拋物線上是否存在點P,使得⊿PMN是以MN為直角邊的直角三角形?若存在求出點P的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形.AB=5,點P是對角線AC上任意一點,E、F分別是AB、BC邊上的中點.當點P在線段AC上移動時,則PE+PF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線y=ax2﹣2x+c(a≠0)與x軸交于A、B兩點(A點在B點左側(cè)),與y軸交于點C(0,﹣3),對稱軸是直線x=1,△ACB的外接圓M交y軸的正半軸與點D,連結(jié)AD、CM,并延長CM交x軸于點E.
(1)求拋物線的函數(shù)表達式和直線BC的函數(shù)表達式;
(2)求證:△CAD∽△CEB;
(3)如圖2,P為x軸正半軸上的一個動點,OP=t,(0<t<3),過P點與y軸平行的直線交拋物線與點Q,若△QAD的面積為S,寫出S與t的函數(shù)表達式,問:當t為何值時,△QAD的面積最大,且最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線與軸交于點A和點C(2,0),與 軸交于點D,將△DOC繞點O逆時針旋轉(zhuǎn)90°后,點D恰好與點A重合,點C與點B重合.
(1)直接寫出點A和點B的坐標;
(2)求和的值;
(3)已知點E是該拋物線的頂點,求證:AB⊥EB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當∠BAC=60°時,將BP旋轉(zhuǎn)到圖2位置,點D在射線BP上.若∠CDP=120°,則∠ACD ∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是 ;
(2)當∠BAC=120°時,將BP旋轉(zhuǎn)到圖3位置,點D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當30°<α<180°時,點D是直線BP上一點(點P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數(shù)關(guān)系的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一臺實物投影儀,圖2是它的示意圖,折線表示固定支架,垂直水平桌面,點為旋轉(zhuǎn)點,可以旋轉(zhuǎn),當繞點逆時針旋轉(zhuǎn)時,投影探頭始終垂直于水平桌面,經(jīng)測量:,,,.(結(jié)果精確到)
(1)如圖2所示,,.
①填空: ;
②求投影探頭的端點到桌面的距離;
(2)如圖3所示,將(1)中的向下旋轉(zhuǎn),當投影探頭的端點到桌面的距離為時,求的大小.(參考數(shù)據(jù)span>)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com