【題目】如圖1,已知拋物線(xiàn)y=ax2﹣2x+c(a≠0)與x軸交于A、B兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),與y軸交于點(diǎn)C(0,﹣3),對(duì)稱(chēng)軸是直線(xiàn)x=1,△ACB的外接圓M交y軸的正半軸與點(diǎn)D,連結(jié)AD、CM,并延長(zhǎng)CM交x軸于點(diǎn)E.
(1)求拋物線(xiàn)的函數(shù)表達(dá)式和直線(xiàn)BC的函數(shù)表達(dá)式;
(2)求證:△CAD∽△CEB;
(3)如圖2,P為x軸正半軸上的一個(gè)動(dòng)點(diǎn),OP=t,(0<t<3),過(guò)P點(diǎn)與y軸平行的直線(xiàn)交拋物線(xiàn)與點(diǎn)Q,若△QAD的面積為S,寫(xiě)出S與t的函數(shù)表達(dá)式,問(wèn):當(dāng)t為何值時(shí),△QAD的面積最大,且最大面積為多少?
【答案】(1),BC:;(2)見(jiàn)解析;(3),時(shí),.
【解析】
(1)先根據(jù)圖像得到a,c的值,進(jìn)而可得到A、B兩點(diǎn)的坐標(biāo),再求出函數(shù)解析式即可;(2)如圖,連結(jié)AM,根據(jù)同弧所對(duì)的圓周角相等得到∠ADC=∠ABC=45°,根據(jù)圓周角定理可得∠AMC=90°,進(jìn)而得到∠ACE=45°,所以∠ACD =∠ECB=45°-∠ECD,即可證明△ACD∽△ECB;(3)根據(jù)題意易得△AOF∽△APQ,再根據(jù)對(duì)應(yīng)邊成比例得到OF與PQ的關(guān)系,將Q點(diǎn)橫坐標(biāo)代入拋物線(xiàn)方程求出PQ的長(zhǎng)度,進(jìn)而求出OF的長(zhǎng)度,再根據(jù)S=S△ADF+S△QDF求出S與t的函數(shù)表達(dá)式,再求出最大值即可.
解:(1)∵拋物線(xiàn)的對(duì)稱(chēng)軸是x=1,
∴=1,∴a=1
由圖像易知c=-3,所以?huà)佄锞(xiàn)解析式為, B(3,0),A(-1,0),C(0,-3)
設(shè)直線(xiàn)BC的函數(shù)表達(dá)式為:y=kx+b,
則,解得:k=1,b=-3,
∴直線(xiàn)BC的解析式為 ;
(2)如圖,連結(jié)AM,
∵OB=OC,∴∠OCB=∠OBC=45°,
∴∠ADC =∠OBC=45°,∠AMC=90°,
又∵AM=CM,∴∠ACE=45°,
∴∠ACD =∠ECB=45°-∠ECD,
∴△ACD∽△ECB
(3)∵PQ∥y軸,∴△AOF∽△APQ,
∴.
∴,
∵PQ=,∴,
∴S=S△ADF+S△QDF=
整理得,
化為頂點(diǎn)式得S=﹣(t-)2+,∴當(dāng) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義:橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)為整點(diǎn)如圖,已知雙曲線(xiàn)經(jīng)過(guò)點(diǎn),記雙曲線(xiàn)與兩坐標(biāo)軸之間的部分為(不含雙曲線(xiàn)與坐標(biāo)軸).
(1)求的值;
(2)求內(nèi)整點(diǎn)的個(gè)數(shù);
(3)設(shè)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)分別作平行于軸軸的直線(xiàn),交雙曲線(xiàn)于點(diǎn),記線(xiàn)段、雙曲線(xiàn)所圍成的區(qū)域?yàn)?/span>,若內(nèi)部(不包括邊界)不超過(guò)個(gè)整點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況,隨機(jī)抽取部分學(xué)生家長(zhǎng)進(jìn)行問(wèn)卷調(diào)查,發(fā)出問(wèn)卷140份,每位學(xué)生的家長(zhǎng)1份,每份問(wèn)卷僅表明一種態(tài)度.將回收的問(wèn)卷進(jìn)行整理(假設(shè)回收的問(wèn)卷都有效),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
學(xué)生家長(zhǎng)對(duì)孩子使用手機(jī)的態(tài)度情況統(tǒng)計(jì)圖
根據(jù)以上信息回答下列問(wèn)題:
(1)回收的問(wèn)卷數(shù)為 份,“嚴(yán)加干涉”部分對(duì)應(yīng)扇形的圓心角度數(shù)為 ;
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若將“稍加詢(xún)問(wèn)”和“從來(lái)不管”視為“管理不嚴(yán)”,已知全校共1500名學(xué)生,請(qǐng)估計(jì)該校對(duì)孩子使用手機(jī)“管理不嚴(yán)”的家長(zhǎng)大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備組織八年級(jí)學(xué)生春游,供學(xué)生選擇的春游地點(diǎn)分別是:植物園、太陽(yáng)島、東北虎林園.每名學(xué)生只能選擇其中一個(gè)春游地點(diǎn)(必選且只選一個(gè)).該校從八年級(jí)學(xué)生中隨機(jī)抽取了a名學(xué)生,對(duì)他們選擇春游地點(diǎn)的情況進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖.
(1)求a的值.
(2)求a名學(xué)生中選擇去植物園春游的人數(shù)占所抽取人數(shù)的百分比是多少?
(3)如果該校八年級(jí)有440名學(xué)生,請(qǐng)你估計(jì)選擇去太陽(yáng)島春游的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)中學(xué)現(xiàn)有學(xué)生2 870人,學(xué)校為了進(jìn)一步豐富學(xué)生課余生活,擬調(diào)查各興趣小組活動(dòng)情況,為此校學(xué)生會(huì)委托小容、小易進(jìn)行一次隨機(jī)抽樣調(diào)查.根據(jù)采集到的數(shù)據(jù),小容繪制的統(tǒng)計(jì)圖1,小易繪制的統(tǒng)計(jì)圖2(不完整)如下:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖1、2中提供的信息,解答下列問(wèn)題:
(1)寫(xiě)出2條有價(jià)值信息(不包括下面要計(jì)算的信息);
(2)這次抽樣調(diào)查的樣本容量是多少?在圖2中,請(qǐng)將小易畫(huà)的統(tǒng)計(jì)圖中的“體育”部分的圖形補(bǔ)充完整;
(3)愛(ài)好“書(shū)畫(huà)”的人數(shù)占被調(diào)查人數(shù)的百分?jǐn)?shù)是多少?估計(jì)實(shí)驗(yàn)中學(xué)現(xiàn)有的學(xué)生中,有多少人愛(ài)好“書(shū)畫(huà)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解九年級(jí)學(xué)生的體能狀況,從我校九年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅圖中的信息回答下列問(wèn)題:
(1)求本次測(cè)試共調(diào)查了 名學(xué)生,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)B等級(jí)人數(shù)對(duì)應(yīng)扇形統(tǒng)計(jì)圖的圓心角的大小為 ;
(3)我校九年級(jí)共有2100名學(xué)生,請(qǐng)你估計(jì)九年級(jí)學(xué)生中體能測(cè)試結(jié)果為C等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對(duì)稱(chēng)軸是直線(xiàn)x=1,以下結(jié)論:①2a+b=0;②b+2c<0;③4a+2b+c<0;④若(0,y1),(1.5,y2)是拋物線(xiàn)上的兩點(diǎn),那么y1<y2.其中正確的是( )
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l經(jīng)過(guò)A(6,0)和B(0,12)兩點(diǎn),且與直線(xiàn)y=x交于點(diǎn)C,點(diǎn)P(m,0)在x軸上運(yùn)動(dòng).
(1)求直線(xiàn)l的解析式;
(2)過(guò)點(diǎn)P作l的平行線(xiàn)交直線(xiàn)y=x于點(diǎn)D,當(dāng)m=3時(shí),求△PCD的面積;
(3)是否存在點(diǎn)P,使得△PCA成為等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列正多邊形中,是中心,定義:為相應(yīng)正多邊形的基本三角形.如圖1,是正三角形的基本三角形;如圖2,是正方形的基本三角形;如圖3,為正邊形…的基本三角形.將基本繞點(diǎn)逆時(shí)針旋轉(zhuǎn)角度得.
(1)若線(xiàn)段與線(xiàn)段相交點(diǎn),則:
圖1中的取值范圍是________;
圖3中的取值范圍是________;
(2)在圖1中,求證
(3)在圖2中,正方形邊長(zhǎng)為4,,邊上的一點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,若有最小值時(shí),求出該最小值及此時(shí)的長(zhǎng)度;
(4)如圖3,當(dāng)時(shí),直接寫(xiě)出的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com