【題目】某藥店購進(jìn)一批消毒液,計(jì)劃每瓶標(biāo)價(jià)100元,由于疫情得到有效控制,藥店決定對(duì)這批消毒液全部降價(jià)銷售,設(shè)每次降價(jià)的百分率相同,經(jīng)過連續(xù)兩次降價(jià)后,每瓶售價(jià)為81元.
(1)求每次降價(jià)的百分率.
(2)若按標(biāo)價(jià)出售,每瓶能盈利100%,問第一次降價(jià)后銷售消毒液100瓶,第二次降價(jià)后至少需要銷售多少瓶,總利潤才能超過5000元?
【答案】(1)10%;(2)33瓶
【解析】
(1)設(shè)每次降價(jià)的百分率為x,根據(jù)“兩次降價(jià)后的售價(jià)=原價(jià)×(1﹣降價(jià)百分比)的平方”,即可得出關(guān)于x的一元二次方程,解方程即可得出結(jié)論;
(2)設(shè)第二次降價(jià)后需要銷售m瓶,根據(jù)“總利潤=第一次降價(jià)后的單件利潤×銷售數(shù)量+第二次降價(jià)后的單件利潤×銷售數(shù)量”,即可得出關(guān)于m的一元一次不等式,解不等式即可得出結(jié)論.
解:(1)設(shè)每次降價(jià)的百分率為x,
依題意得:,
解得:(舍)
答:每次降價(jià)的百分率為10%.
(2)進(jìn)價(jià)為:100÷(1+100%)=50元
第一次降價(jià)后售價(jià)為:100×(1-10%)=90元
設(shè)第二次降價(jià)后需要銷售m瓶,則
解得:,
∵m為整數(shù),
∴第二次降價(jià)后至少需要銷售33瓶,總利潤才能超過5000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,折疊矩形紙片 ABCD,具體操作:①點(diǎn) E 為 AD 邊上一點(diǎn)(不與點(diǎn) A,D 重合),把△ABE 沿 BE 所在的直線折疊,A 點(diǎn)的對(duì)稱點(diǎn)為 F 點(diǎn);②過點(diǎn) E 對(duì)折∠DEF,折痕EG 所在的直線交 DC 于點(diǎn) G,D 點(diǎn)的對(duì)稱點(diǎn)為 H 點(diǎn).
(1)求證:△ABE∽△DEG.
(2)若 AB=6,BC=10
①點(diǎn) E 在移動(dòng)的過程中,求 DG 的最大值;
②如圖 2,若點(diǎn) C 恰在直線 EF 上,連接 DH,求線段 DH 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】酒令是中國民間風(fēng)俗之一.白居易曾詩曰:“花時(shí)同醉破春愁,醉折花枝當(dāng)酒籌”飲酒行令,是中國人在飲酒時(shí)助興的一種特有方式,不僅要以酒助興,往往還伴之以賦詩填詞、猜迷形拳之舉,最早誕生于西周,完備于隋唐,“虎棒雞蟲令”是其中一種:“二人相對(duì),以筷子相聲,同時(shí)或喊虎、喊棒、喊雞、喊蟲,以棒打虎、虎吃雞、雞吃蟲、蟲嗑棒論勝負(fù),負(fù)者飲.若棒興雞、或蟲興虎同時(shí)出現(xiàn)(解釋:若棒與雞,虎與蟲同時(shí)喊出)或兩人喊出同一物,則不分勝負(fù),繼續(xù)喊”.依據(jù)上述規(guī)則,張三和李四同時(shí)隨機(jī)地喊出其中一物,兩人只喊一次.
(1)求張三喊出“虎”取勝的概率;
(2)用列表法或畫樹狀圖法,求李四取勝的概率;
(3)直接寫出兩人能分出勝負(fù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點(diǎn)A、B,與y軸負(fù)半軸交于點(diǎn)C,且OC=OB,其中B點(diǎn)坐標(biāo)為(3,0),對(duì)稱軸l為直線x=.
(1)求拋物線的解析式;
(2)在x軸上方有一點(diǎn)P,連接PA后滿足∠PAB=∠CAB,記△PBC的面積為S,求當(dāng)S=10.5時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)點(diǎn)P恰好落在拋物線上時(shí),將直線BC上下平移,平移后的直線y=x+t與拋物線交于C′、B′兩點(diǎn)(C′在B′的左側(cè)),若以點(diǎn)C′、B′、P為頂點(diǎn)的三角形是直角三角形,求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,對(duì)角線BD平分∠ABC,過點(diǎn)D作DE⊥BC,垂足為E,若BD=,BC=6,則AB=( )
A.B.2C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形各邊上分別截取,且,若四邊形的面積為.四邊形面積為,當(dāng),且時(shí),則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,點(diǎn)是射線上的動(dòng)點(diǎn),連接,將沿著翻折得到,設(shè),
(1)如圖1,當(dāng)點(diǎn)在上時(shí),求的值.
(2)如圖2,連接,,當(dāng)時(shí),求的面積.
(3)在點(diǎn)的運(yùn)動(dòng)過程中,當(dāng)是等腰三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.
填空: ①的值為 ;②∠DBE的度數(shù)為 .
(2)類比探究
如圖2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,點(diǎn)D是線段AB上一動(dòng)點(diǎn),連接BE.請(qǐng)判斷的值及∠DBE的度數(shù),并說明理由.
(3)拓展延伸
如面3,在(2)的條件下,將點(diǎn)D改為直線AB上一動(dòng)點(diǎn),其余條件不變,取線段DE的中點(diǎn)M,連接BM、CM,若AC=2,則當(dāng)△CBM是直角三角形時(shí),線段BE的長是多少?請(qǐng)直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形是矩形,,將沿直線翻折,使點(diǎn)落在點(diǎn)處,交軸于點(diǎn),若,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com