【題目】如圖,在矩形ABCD中,AB=2,AD=1,點P在線段AB上運動,現將紙片折疊,使點D與點P重合,得折痕EF(點E、F為折痕與矩形邊的交點),再將紙片還原設四邊形EPFD的面積為S,當四邊形EPFD為菱形時,請寫出S的取值范圍____.
【答案】1≤S≤.
【解析】
由要使四邊形EPFD為菱形,則需DE=EP=FP=DF,可得當點E與點A重合時,AP最小;當點P與點B重合時,AP最大,繼而求得四邊形EPFD為菱形的AP的取值范圍,進而得到S的取值范圍.
∵要使四邊形EPFD為菱形,則需DE=EP=FP=DF,
∴如圖1:當點E與點A重合時,AP=AD=1,此時AP最小;
此時,S=AP2=1.
如圖2:當點P與B重合時,AP=AB=2,此時AP最大;
此時,設AE=x,則EP=DE=2﹣x,
根據勾股定理得:12+x2=(2﹣x)2,
解得:x=,
∴EP=,
∴S=1×=,
∴四邊形EPFD為菱形時,S的取值范圍:1≤S≤.
故答案為:1≤S≤.
科目:初中數學 來源: 題型:
【題目】某電器超市銷售每臺進價分別為160元,200元的A、B兩種型號的電風扇,表中是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入/元 | |
A種型號/臺 | B種型號/臺 | ||
第1周 | 3 | 5 | 1800 |
第2周 | 4 | 10 | 3200 |
(1)A、B兩種型號的電風扇的銷售單價是多少?
(2)若該超市準備用不多于5400元的金額再次采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】影響剎車距離的最主要因素是汽車行駛的速度及路面的摩擦系數.有研究表明,晴天在某段公路上行駛時,速度v(km/h)的汽車的剎車距離s(m)可以由公式確定;雨天行駛時,這一公式為.
(1)如果行車速度是70 km/h,那么在雨天行駛和在晴天行駛相比,剎車距離相差多少米?
(2)如果行車速度分別是60 km/h與80 km/h,那么同在雨天行駛(相同的路面)相比,剎車距離相差多少?
(3)根據上述兩點分析,你想對司機師傅說些什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A(a,0),C(0,c)且滿足:,長方形ABCO在坐標系中(如圖1),點O為坐標系的原點.
(1)求點B的坐標.
(2)如圖2,若點M從點A出發(fā),以2個單位/秒的速度向右運動(不超過點O),點N從原點O出發(fā),以1個單位/秒的速度向下運動(不超過點C),設M、N兩點同時出發(fā),在它們運動的過程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
(3)如圖3,E為x軸負半軸上一點,且∠CBE=∠CEB,F是x軸正半軸上一動點,∠ECF的平分線CD交BE的延長線于點D,在點F運動的過程中,請?zhí)骄俊?/span>CFE與∠D的數量關系,并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在三角形△ABC中,D是BC邊的中點,AD=BC.
(1)△ABC的形狀為 .
(2)如圖,BM=3,BC=12,∠B=45°,∠MAN=45°,求CN;
(3)在(2)的條件下,AN= .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列資料,并解決問題.
地球上的水包括大氣水、地表水和地下水三大類,地表水可以分為海洋水和陸地水,陸地水又可分為冰川、河流、湖泊等。地球上的水總體積是14.2億,其中,海洋水約占96.53%以上,淡水約占2.53%,而在淡水中,大部分在兩極的冰川、冰蓋和地下水的形式存在,其中冰川、冰蓋占77.2%,地下水占22.4%,而人類可以利用的水還不到1%.
我國是世界上嚴重缺水的國家之一,年水資源總量居世界第六位,人均占有水量僅為左右,只相當于世界人均的,居世界第110位,中國已被聯合國列為13個貧水國之一.
圖1是我國2006年至2015年水資源總量變動趨勢圖,全國用水量由農業(yè)用水、工業(yè)用水、生活用水和生態(tài)補水四部分組成,表1是2015年我國四類用水量統計表.
表1 2015年四類用水統計表
用水類別 | 用水量(億立方米) | 所占百分比 |
農業(yè)用水 | 3903.9 | 63.17% |
工業(yè)用水 | 1380.6 | 22.34% |
生活用水 | 790.5 | 12.79% |
生態(tài)補水 | 105.0 | 1.70% |
解決問題:
(1)根據國外的經驗,一個國家的用水量超過其水資源總量20%,就有可能發(fā)生“水危機”.依據這個標準,請你計算2015年我國是否屬于可能發(fā)生“水危機”行列?
(2)第四十七屆聯合國大會作出決議,確定每年3月22日為“世界水日”.我國水利部確定每年的3月22日至28日是“中國水周”.我國紀念“世界水日”和“中國水周”宣傳活動的主題是“實施國家節(jié)水行動,建設節(jié)水型社會”.小亮作為學校的節(jié)水行動宣傳志愿者,對他所在學校部分學生進行了“節(jié)水在行動”的隨機調查,表2是問卷調查表,并將調查結果繪制成圖2和圖3所示的統計圖(均不完整),請根據統計圖提供的信息,解答下列問題:
①參與本次調查的學生人數有________人(直接寫出答案);
②補全條形統計圖;在扇形統計圖中,觀點的百分比是_______(直接寫出答案);
表2:節(jié)水問卷調查表 | ||
你好,請在表格中選擇一項你對節(jié)水的認識,在其后面打“√”,非常感謝你的合作. | ||
代碼 | 觀點 | |
A | 水費低,不需要節(jié)水 | |
B | 節(jié)水意識薄弱,認為水資源充足 | |
C | 缺乏社會責任意識,節(jié)水與我無關 | |
D | 知道節(jié)水的重要性,并有節(jié)水的好習慣 |
③若該學校共有800名學生,請估計其中“知道節(jié)水的重要性,并有節(jié)水的好習慣”的有多少人?
④談一談你對節(jié)約用水的看法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個,黃球有1個,從中任意捧出1球是紅球的概率為
(1)試求袋中綠球的個數;
(2)第1次從袋中任意摸出l球(不放回),第2次再任意摸出1球,請你用畫樹狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.
(1)試探究AP與BQ的數量關系,并證明你的結論;
(2)當AB=3,BP=2PC,求QM的長;
(3)當BP=m,PC=n時,求AM的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com