【題目】如圖,正方形CGEF的對角線CE在正方形ABCD的邊BC的延長線上(CG>BC),M是線段AE的中點,DM的延長線交CE于N.
(1)求證:AD=NE
(2)求證:①DM=MF;②DM⊥MF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題
(1)由已知條件證:△ADM≌△ENM可得AD=NE;
(2)連接FD、FN,結(jié)合(1)中所得結(jié)論和已知條件可證△CDF≌△ENF,從而可得:FD=FN,∠3=∠4,由此可得:∠3+∠CFN=∠4+∠CFN=∠CFE=90°,這樣可證得:△DFN是等腰直角三角形;再由△ADM≌△ENM可得DM=NM,就可得到:FM是等腰直角△DFN斜邊上的中線,就可得到;DM=MF,DM⊥MF.
試題解析:
(1)∵四邊形ABCD是正方形,
∴AD∥BC,∠BCD=90°,AD=CD,
∴∠MAD=∠MEN,
又∵M是AE的中點,
∴AM=EM
在△ADM和△ENM中,,
∴△ADM≌△ENM(ASA),
∴AD=EN;
(2)連接FD、FN,
∵CE是正方形CGEF的對角線,
∴CF=EF,∠1=∠FEN=45°,
又∵∠BCD=90°,
∴∠DCE=90°,
∴∠2=∠1=∠FEN=45°,
在△CDF和△ENF中,,
∴△CDF≌△ENF(SAS)
∴∠3=∠4,DF=FN,
又∵∠CFN+∠4=90°,
∴∠CFN+∠3=90°,
∴△DFN是等腰直角三角形,
∵△ADM≌△ENM,
∴DM=NM,
∴FM=DM,F(xiàn)M⊥DM.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①所示,在△ABC中,點O是AC上一點,過點O的直線與AB,BC的延長線分別相交于點M,N.
【問題引入】
(1)若點O是AC的中點, ,求的值;
溫馨提示:過點A作MN的平行線交BN的延長線于點G.
【探索研究】
(2)若點O是AC上任意一點(不與A,C重合),求證: ;
【拓展應(yīng)用】
(3)如圖②所示,點P是△ABC內(nèi)任意一點,射線AP,BP,CP分別交BC,AC,AB于點D,E,F(xiàn).若, ,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)若點E在軸上,點P在拋物線上.是否存在以A,C,E,P為頂點且以AC為一邊的平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于O點,BE平分∠ABO交AO于E點,CF⊥BE于F點,交BO于G點,連結(jié)EG、OF.則∠OFG的度數(shù)是( )
A.60°B.45°C.30°D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,P,B,C是半徑為8的⊙O上的四點,且滿足∠BAC=∠APC=60°,
(1)求證:△ABC是等邊三角形;
(2)求圓心O到BC的距離OD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的口袋里裝有分別標有數(shù)字1,2,3,4四個小球,除數(shù)字不同外,小球沒有任何區(qū)別,每次實驗先攪拌均勻.
(1)若從中任取一球,球上的數(shù)字為偶數(shù)的概率為多少?
(2)若設(shè)計一種游戲方案:若從中任取一球(不放回),再從中任取一球。兩個球上的數(shù)字之差的絕對值為1為甲勝,否則為乙勝,請問這種游戲方案設(shè)計對甲、乙雙方公平嗎?請用畫樹狀圖或列表格的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】受地震的影響,某超市雞蛋供應(yīng)緊張,需每天從外地調(diào)運雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場調(diào)運雞蛋,已知甲養(yǎng)殖場每天最多可調(diào)出800斤,乙養(yǎng)殖場每天最多可調(diào)出900斤,從兩養(yǎng)殖場調(diào)運雞蛋到超市的路程和運費如表:
到超市的路程(千米) | 運費(元/斤千米) | |
甲養(yǎng)殖場 | 200 | 0.012 |
乙養(yǎng)殖場 | 140 | 0.015 |
(1)若某天調(diào)運雞蛋的總運費為2670元,則從甲、乙兩養(yǎng)殖場各調(diào)運了多少斤雞蛋?
(2)設(shè)從甲養(yǎng)殖場調(diào)運雞蛋x斤,總運費為W元,試寫出W與x的函數(shù)關(guān)系式,怎樣安排調(diào)運方案才能使每天的總運費最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com