【題目】已知:在平面直角坐標系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點A、B,與y軸交于點C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設△RBC的面積為s,點R的橫坐標為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點D在x軸的負半軸上,點F在y軸的正半軸上,點E為OB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PD交OC于點G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點R作RT⊥OB于點T,交PC于點S,若點P在BT的垂直平分線上,OB﹣TS=,求點R的坐標.
【答案】(1)y=﹣x2+x+4;(2)s=﹣t2+4t;(3)當a=1時,R(2,4),當a=時,R(,).
【解析】
(1)由題意可求A(-2,0),B(4,0),將A點代入y=ax2-2ax+4,即可求a的值;
(2)設R(t,﹣t2+t+4),過點R作x、y軸的垂線,垂足分別為R',R',可得四邊形RR'OR'是矩形,求出S△OCR=OCRR'=×4t=2t,S△ORB=OBRR'=×4(﹣t2+t+4)=﹣t2+2t+8,則有S△RBC=S△ORB+S△OCR﹣S△OBC=﹣t2+2t+8+2t﹣×4×4=﹣t2+4t;
(3)設EF、PD交于點G',連EG,可證明OP是EG的垂直平分線,過P作KP⊥x軸于K,PW⊥y軸于W,交RT于點H,則四邊形PWOK是正方形,設OT=2a,則TK=KB=CW=2﹣a,HT=OK=PW=2+a,可求HS=TS﹣HT=﹣(2+a)=﹣a,又由tan∠HPS=,可得,則a=1或a=,即可求R得坐標.
解:(1)∵拋物線的對稱軸為x=1,AB=6,
∴A(﹣2,0),B(4,0),
將點A代入y=ax2﹣2ax+4,則有0=4a+4a+4,
∴a=﹣,
∴y=﹣x2+x+4;
(2)
設R(t,﹣t2+t+4),
過點R作x、y軸的垂線,垂足分別為R',R',
則∠RR'O=∠RR'O=∠R'OR'=90°,
∴四邊形RR'OR'是矩形,
∴RR'=OR'=t,OR'=RR'=﹣t2+t+4,
∴S△OCR=OCRR'=×4t=2t,
S△ORB=OBRR'=×4(﹣t2+t+4)=﹣t2+2t+8,
∴S△RBC=S△ORB+S△OCR﹣S△OBC=﹣t2+2t+8+2t﹣×4×4=﹣t2+4t;
(3)
設EF、PD交于點G',連EG,
∵PD⊥EF,
∴∠FG'G=∠DG'E=90°=∠DOG,
∴∠OFE=∠GDO,
∵∠DGO=∠FOE=90°,EF=DG,
∴OP是EG的垂直平分線,
∴OP平分∠COB,
過P作KP⊥x軸于K,PW⊥y軸于W,交RT于點H,
則PW=PK,∠PWO=∠PKO=∠WOK=90°,
∴四邊形PWOK是正方形,
∴WO=OK,
∵OC=OB=4,
∴CW=KB,
∵P在BT垂直平分線上,
∴PT=PB,
∴TK=KB=CW,
設OT=2a,則TK=KB=CW=2﹣a,
HT=OK=PW=2+a,
∵OB﹣TS=,
∴HS=TS﹣HT=﹣(2+a
∵tan∠HPS=,
∴,
∴a=1或a=,
當a=1時,OT=2,∴R(2,4),
當a=時,OT=,∴R(,)
綜上,點R的坐標是(2,4),(,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點,BC⊥x軸于點C,若△OBC的面積為2,且A點的縱坐標為4,B點的縱坐標為1.
(1)求反比例函數(shù)、一次函數(shù)的表達式及直線AB與x軸交點E的坐標;
(2)已知點D(t,0)(t>0),過點D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點P,與反比函數(shù)上的圖像相交于點Q,若點P位于點Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列8×8的網(wǎng)格中,橫、縱坐標均為整點的數(shù)叫做格點,△ABC的頂點的坐標分別為A(3,0)、B(0,4)、C(4,2).
(1)直接寫出△ABC的形狀;
(2)要求在下圖中僅用無刻度的直尺作圖:將△ABC繞點B逆時針旋轉(zhuǎn)角度2α得到△A1BC1,其中α=∠ABC,A、C的對應點分別為A1、C1,請你完成作圖;
(3)在網(wǎng)格中找一個格點G,使得C1G⊥AB,并直接寫出G點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育組為了了解九年級450名學生排球墊球的情況,隨機抽查了九年級部分學生進行排球墊球測試(單位:個),根據(jù)測試結(jié)果,制成了下面不完整的統(tǒng)計圖表:
組別 | 個數(shù)段 | 頻數(shù) | 頻率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的數(shù) , ;
(2)估算該九年級排球墊球測試結(jié)果小于10的人數(shù);
(3)排球墊球測試結(jié)果小于10的為不達標,若不達標的5人中有3個男生,2個女生,現(xiàn)從這5人中隨機選出2人調(diào)查,試通過畫樹狀圖或列表的方法求選出的2人為一個男生一個女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組學過銳角三角函數(shù)后,到市龍源湖公園測量塑像“夸父追日”的高度,如圖所示,在A處測得塑像頂部D的仰角為45°,塑像底部E的仰角為30.1°,再沿AC方向前進10m到達B處,測得塑像頂部D的仰角為59.1°.求塑像“夸父追日”DE高度.(結(jié)果精確到0.1m.參考數(shù)據(jù):sin30.1°≈0.50,cos30.1°≈0.87,tan30.1°≈0.58,sin59.1°≈0.86,cos59.1°≈0.51,tan59.1°≈1.67)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在網(wǎng)格紙中,、都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)
(1)在圓①中畫圓的一個內(nèi)接正六邊形;
(2)在圖②中畫圓的一個內(nèi)接正八邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊三角形ABC的AC,BC邊上各取一點P,Q,使AP=CQ,AQ,BP相交于點O.若BO=6,PO=2,則AP的長,AO的長分別為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,通過直尺和圓規(guī)作的平分線交于點,以為圓心,為半徑的弧交于點,連結(jié),若,,則四邊形的面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com