【題目】如圖將小球從斜坡的O點(diǎn)拋出,小球的拋出路線可以用二次函數(shù)y=ax2+bx刻畫,頂點(diǎn)坐標(biāo)為(4,8),斜坡可以用 刻畫.
(1)求二次函數(shù)解析式;
(2)若小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)求小球飛行過(guò)程中離坡面的最大高度.
【答案】
(1)解:∵拋物線頂點(diǎn)坐標(biāo)為(4,8),
∴ ,
解得: ,
∴二次函數(shù)解析式為:y=﹣ x2+4x
(2)解:聯(lián)立兩解析式可得:
,
解得: 或 ,
∴點(diǎn)A的坐標(biāo)是(7, )
(3)解:設(shè)小球離斜坡的鉛垂高度為z,則z=﹣ x2+4x﹣ x=﹣ (x﹣3.5)2+ ,
故當(dāng)小球離點(diǎn)O的水平距離為3.5時(shí),小球離斜坡的鉛垂高度最大,最大值是
【解析】(1)依據(jù)拋物線的頂點(diǎn)坐標(biāo)公式可建立過(guò)于a,b的二元一次方程組,故此可求出a,b的值,于是可得到拋物線的解析式;
(2)聯(lián)立直線與拋物線的解析式,通過(guò)解方程組可求出交點(diǎn)A的坐標(biāo);
(3)設(shè)小球飛行過(guò)程中離坡面距離為z,則Z=y拋物線-y直線,最后,利用配方法求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.
(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.
(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華將一條直角邊長(zhǎng)為1的一個(gè)等腰直角三角形紙片(如圖1),沿它的對(duì)稱軸折疊1次后得到一個(gè)等腰直角三角形(如圖2),再將圖2的等腰直角三角形沿它的對(duì)稱軸折疊后得到一個(gè)等腰直角三角形(如圖3),則圖3中的等腰直角三角形的一條腰長(zhǎng)為;同上操作,若小華連續(xù)將圖1的等腰直角三角形折疊n次后所得到的等腰直角三角形(如圖n+1)的一條腰長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CE是∠ACD的角平分線,F為CA延長(zhǎng)線上一點(diǎn),G為線段AB上一點(diǎn),連接FG.
(1)若∠ACD=110°,∠AFG=55°,試說(shuō)明:FG∥CE
(2)若∠AGF=20°,∠BAC=45°,且FG∥CE,求∠ACE的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下面直角坐標(biāo)系中,已知A(0,a),B(b,0),C(b,c)三點(diǎn),其中a.b.c滿足關(guān)系式,c是64的算術(shù)平方根.
(1)直接寫出a,b,c的值:a=____,b=____,c= ____;
(2)如果在第二象限內(nèi)有一點(diǎn)P(m,2),請(qǐng)用含m的式子表示四邊形APOB的面積S;
(3)在(2)的條件下,是否存在點(diǎn)P,使四邊形APOB的面積與△ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,他了解到這扇門的相關(guān)數(shù)據(jù):這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB,CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請(qǐng)你幫小紅計(jì)算出這扇圓弧形門的最高點(diǎn)離地面的距離是( )
A.2米
B.2.5米
C.2.4米
D.2.1米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空:已知:如圖,、、三點(diǎn)在同一直線上,、、三點(diǎn)在同一直線上,,.求證:.
證明:∵
∴________(內(nèi)錯(cuò)角相等,兩直線平行)
∴________(兩直線平行,內(nèi)錯(cuò)角相等)
∵
∴(________________)
∵
∴,(________________)
即________
∴
∴(同位角相等,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)
(2)20142-2018 × 2010
(3)(x+2y-3)(x-2y-3)
(4)
(5)先化簡(jiǎn)求值: ,其中, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DE,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com