【題目】把以下各數(shù)分別填入相應(yīng)的集合里.3.14、0.121121112…、(﹣1)2、|﹣6|、﹣2011、﹣22、π、0、20%
無理數(shù)集合:{ …}
負(fù)整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
正數(shù)集合:{ …}
【答案】0.121121112…、π;﹣2011、﹣22;3.14、(﹣1)2、20%;3.14,0.121121112…、(﹣1)2、|﹣6|、π、20%.
【解析】
根據(jù)實數(shù)的分類進行解答即可.
解:無理數(shù)集合:{0.121121112…、π…}
負(fù)整數(shù)集合:{﹣2011、﹣22…}
分?jǐn)?shù)集合:{3.14、(﹣1)2、20%…}
正數(shù)集合:{3.14,0.121121112…、(﹣1)2、|﹣6|、π、20%…}
故答案為:0.121121112…、π;﹣2011、﹣22;3.14、(﹣1)2、20%;3.14,0.121121112…、(﹣1)2、|﹣6|、π、20%.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在,兩家超市發(fā)現(xiàn)他看中的隨身聽的單價相同,書包單價也相同,隨身聽和書包單價之和是元,且隨身聽的單價比書包的單價的倍少元.
(1)求該同學(xué)看中的隨身聽和書包的單價各是多少元?
(2)某一天該同學(xué)上街,恰好趕上商家促銷,超市所有商品打八五折銷售,超市全場購物每滿元返購物券元銷售(不足元不返券,購物券全場通用),但他只帶了元錢,如果他只在一家超市購買看中的這兩樣商品,你能說明他可以選擇哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三峽水庫在正常運用情況下,為滿足興利除害的要求而蓄到的最高蓄水位為米,每年汛期允許蓄水的最大水位為米。在每年汛期,保證上游水位在米的防洪限制水位,多出米的相應(yīng)庫容以迎接洪峰。洪峰后,超過米的水量下泄,為下次洪峰做準(zhǔn)備,下泄的水使中下游江面的水位升高,但不影響人們的生命和財產(chǎn)安全。監(jiān)測水位變化的數(shù)據(jù)為防洪抗旱提供重要依據(jù),根據(jù)多年統(tǒng)計,洪峰到達(dá)時萬州監(jiān)測點的平均水位為米。下列是水位監(jiān)測員小劉在汛期某一周每天同一時間統(tǒng)計的長江(萬州監(jiān)測點)水位高低的變化情況:(單位:米,用正數(shù)記水位比米的上升數(shù),用負(fù)數(shù)記下降數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位變化 |
(1)本周星期三萬州監(jiān)測點的實際水位是多少?
(2)若水位每上升米,蓄水量將增加億立方米,則根據(jù)數(shù)據(jù)顯示,星期六的蓄水量比星期四的蓄水量增加了多少億立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某原料倉庫一天的原料進出記錄如下表(運進用正數(shù)表示,運出用負(fù)數(shù)表示);
每次進出數(shù)量(單位:噸) | -3 | 4 | -1 | 2 | -5 |
進出次數(shù) | 2 | 1 | 3 | 3 | 2 |
(1)這天倉庫的原料比原來增加或減少了多少噸?
(2)根據(jù)實際情況,現(xiàn)有兩種方案:
方案一:運進每噸原料費用5元,運出每噸原料費用8元;
方案二:不管運進還是運出費用都是每噸原料6元;
從節(jié)約運費的角度考慮,選用哪一種方案較合適?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有如下說法:①直線是一個平角;②如果線段AB=BC,則B是線段AC的中點;③射線AB與射線BA表示同一射線;④用一個擴大2倍的放大鏡去看一個角,這個角擴大2倍;⑤兩點之間,直線最短;⑥120.5°=120°30′,其中正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,C是圓上一點,∠BAC的平分線交⊙O于點D,過D作DE⊥AC交AC的延長線于點E,如圖①.
(1)求證:DE是⊙O的切線;
(2)若AB=10,AC=6,求BD的長;
(3)如圖②,若F是OA中點,FG⊥OA交直線DE于點G,若FG=,tan∠BAD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線AM,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)求點A的坐標(biāo);
(3)如果B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且B點的橫坐標(biāo)為1,在x軸上確定一點P,使PA+PB最小.求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com