【題目】已知AB是⊙O的直徑,C是圓上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,過D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E,如圖①.
(1)求證:DE是⊙O的切線;
(2)若AB=10,AC=6,求BD的長(zhǎng);
(3)如圖②,若F是OA中點(diǎn),FG⊥OA交直線DE于點(diǎn)G,若FG=,tan∠BAD=,求⊙O的半徑.
【答案】(1)證明見解析;(2);(3)4.
【解析】試題分析:(1)欲證明DE是⊙O的切線,只要證明OD⊥DE;
(2)首先證明OD⊥BC,在Rt△BDN中,利用勾股定理計(jì)算即可;
(3)如圖②中,設(shè)FG與AD交于點(diǎn)H,根據(jù)題意,設(shè)AB=5x,AD=4x,則AF=x,想辦法用x表示線段FH、GH,根據(jù)FH+GH=,列出方程即可解決問題;
試題解析:解:(1)證明:如圖①中,連接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切線.
(2)如圖①中,連接BC,交OD于點(diǎn)N,∵AB是直徑,∴∠BCA=90°,∵OD∥AE,O是AB的中點(diǎn),∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,則BN=4,ND=2,∴BD==.
(3)如圖②中,設(shè)FG與AD交于點(diǎn)H,根據(jù)題意,設(shè)AB=5x,AD=4x,則AF=x,FH=AFtan∠BAD=x=x,AH== =,HD=AD﹣AH=4x﹣=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,過點(diǎn)G作GM⊥HD,交HD于點(diǎn)M,∴MH=MD,∴HM=HD=×=,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===,∵FH+GH=,∴+=,解得x=,∴此圓的半徑為×=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意四個(gè)有理數(shù)、、、,可以組成兩個(gè)有理數(shù)對(duì)與.我們規(guī)定:
.
例如:.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(duì)______;
(2)若有理數(shù)對(duì),求的值;
(3)當(dāng)滿足等式的是整數(shù)時(shí),求整數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把以下各數(shù)分別填入相應(yīng)的集合里.3.14、0.121121112…、(﹣1)2、|﹣6|、﹣2011、﹣22、π、0、20%
無理數(shù)集合:{ …}
負(fù)整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
正數(shù)集合:{ …}
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
由以上三個(gè)等式相加,可得:1×2+2×3+3×4=×3×4×5=20,讀完以上材料,請(qǐng)你計(jì)算下列各題:
(1)1×2+2×3+3×4+…+10×11(寫出過程)
(2)1×2+2×3+3×4+…+n×(n+1)= ;
(3)1×2×3+2×3×4+3×4×5+…+9×10×11= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學(xué)興趣小組兩次測(cè)量它在地面上的影子,第一次是陽光與地面成60°角時(shí),第二次是陽光與地面成30°角時(shí),兩次測(cè)量的影長(zhǎng)相差8米,則樹高_____________米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例的圖象相交于A(-2,1),B(,-2)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2) 求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2-2ax-3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),經(jīng)過點(diǎn)A的直線l:y=kx+b與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)求點(diǎn)A的坐標(biāo)及直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E為直線l下方拋物線上一點(diǎn),當(dāng)△ADE的面積的最大值為時(shí),求拋物線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)某二次三項(xiàng)式進(jìn)行因式分解時(shí),甲同學(xué)因?yàn)榭村e(cuò)了一次項(xiàng)系數(shù)而將其分解為,乙同學(xué)因?yàn)榭村e(cuò)了常數(shù)項(xiàng)而將其分解為,請(qǐng)寫出正確的因式分解的結(jié)果__________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com