【題目】作圖題
(1)如圖①,點C是∠AOB邊OB上的一點,在圖中作出點C到OA的垂線段CD,垂足為D.再過C點作OA的平行線CE.
(2)如圖②,在正方形網(wǎng)格中,每個小正方形的邊長為1,△ABC的頂點都在正方形頂點上,將△ABC先向左平移2個單位,再向下平移3個單位,得到△A′B′C′,請你畫出平移后的△A′B′C′.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,分別過點C、D作CE∥BD、DE∥AC,CE、DE交于點E.
(1)求證:四邊形OCED是菱形.
(2)將矩形ABCD改為菱形ABCD,其余條件不變,連結(jié)OE.若AC=10,BD=24,則OE的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果第一次租用2輛A型車和1輛B型車裝運水果,一次運貨10噸;第二次租用1輛A型車和2輛B型車裝水果,一次運貨11噸(兩次運貨都是滿載)
①求每輛A型車和B型車滿載時各裝水果多少噸?
②現(xiàn)有31噸水果需運出,計劃同時租用A型車和B型車一次運完,且每輛車都恰好裝滿,請設(shè)計出有哪幾種租車方案?
③若A型車每輛租金200元,B型車每輛租金300元,問哪種租車方案最省錢,最省錢的方案總共租金多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點D、E、F分別在三邊上,E是AC的中點,AD、BE、CF交于一點G,BD=2DC,S△GEC=3,S△GDC=4,則△ABC的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點是的中點,,垂足為點,連接.
(1)如圖1,與的數(shù)量關(guān)系是________;
(2)如圖2,若是線段上一動點(點不與點、重合),連接,將線段繞點逆時針旋轉(zhuǎn),得到線段,連接,請猜想、、三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若點是線段延長線上一動點,按照(2)中的作法,請在圖3中補全圖形,并直接寫出、、三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王老師將3個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學(xué)生進(jìn)行摸球?qū)嶒,每次摸出一個球(有放回),下表是活動進(jìn)行中的一組部分統(tǒng)計數(shù)據(jù).
摸球的次數(shù) | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次數(shù) | 23 | 31 | 60 | 127 | 203 | 251 |
摸到黑球的頻率 | 0.23 | 0.21 | 0.30 | 0.254 | 0.253 | ______ |
(1)根據(jù)上表數(shù)據(jù)計算= .估計從袋中摸出一個球是黑球的概率是 .(精確到0. 01)
(2)估算袋中白球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是矩形ABCD的對角線,AC的垂直平分線EF分別交BC、AD于點E和F,EF交AC于點O.
(1)求證:四邊形AECF是菱形;(2)若AB=6,AD=8,求四邊形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,點A0位于坐 標(biāo)原點,點A1,A2,A3,…,A2017在軸的正半軸上,點B1, B2, B3,…,B2017在二次函數(shù)位于第一象限的圖象上,△A0B1A1,△A1B2A2,△A2B3A3,…,△A2016B2017A2017都為等邊三角形,則等邊△A2016B2017A2017的高為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com