【題目】如圖,在ABC中,AB=AC=6,BAC=90°,點D、EBC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____

【答案】

【解析】

過點AAGBC,垂足為G,根據(jù)等腰直角三角形的性質(zhì)可得AG=BG=CG=6,設BD=x,則DF=BD=x,EF=7-x,然后利用勾股定理可得到關于x的方程,從而求得DG的長,繼而可求得AD的長.

如圖所示,過點AAGBC,垂足為G,

AB=AC=6,BAC=90°,

BC==12,

AB=AC,AGBC,

AG=BG=CG=6,

BD=x,則EC=12-DE-BD=12-5-x=7-x,

由翻折的性質(zhì)可知:∠DFA=B=C=AFE=45°,DB=DF,EF=FC,

DF=x,EF=7-x,

RtDEF中,DE2=DF2+EF2,即25=x2+(7-x)2,

解得:x=3x=4,

BD=3時,DG=3,AD=,

BD=4時,DG=2,AD=,

AD的長為,

故答案為:.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,把二元一次方程的一個解用一個點表示出來,例如:可以把它的其中一個解用點(21 )在平面直角坐標系中表示出來

探究1:

(1)請你在直角坐標系中標出4個以方程的解為坐標的點,然后過這些點中的任意兩點作直線,你有什么發(fā)現(xiàn),請寫出你的發(fā)現(xiàn) .

在這條直線上任取一點,這個點的坐標是方程的解嗎? (不是”___

(2)以方程的解為坐標的點的全體叫做方程的圖象.根據(jù)上面的探究想一想:方程的圖象是_ _.

探究2:根據(jù)上述探究結論,在同-平面直角坐標系中畫出二元一次方程組中的兩個二元一次方程的圖象,由這兩個二元一次方程的圖象,請你直接寫出二元一次方程組的解,即

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,BE平分∠ABC,交AD于點EFBC上一點,且CF=AE,連接DF

1)求證:四邊形BEDF是平行四邊形;

2)若∠ABC=70°,求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州長江三橋于2019530日建成通車,三橋如一架巨大的豎琴屹立于平湖之上,巍峨挺拔,絢麗多彩,成為萬州靚麗的風景。周末,小明和爺爺一同在大橋上勻速散步,他們散步的速度是50米/分,小明觀察到同向車道上駛過的公交車間隔時間是10分鐘40秒,假定同向的公交車都保持48千米/小時的速度勻速行駛(中途?空镜臅r間忽略不計),且公交車從車站發(fā)車的時間間隔是固定的,則車站每隔______分鐘發(fā)出一輛公交車。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購.經(jīng)調(diào)查:購買臺甲型設備比購買臺乙型設備多花萬元,購買臺甲型設備比購買臺乙型設備少花萬元.

1)求甲、乙兩種型號設備每臺的價格;

2)該公司經(jīng)決定購買甲型設備不少于臺,預算購買節(jié)省能源的新設備資金不超過萬元,你認為該公司有哪幾種購買方案;

3)在(2)的條件下,已知甲型設備每月的產(chǎn)量為噸,乙型設備每月的產(chǎn)量為.若每月要求產(chǎn)量不低于噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊矩形紙板,長為20cm,寬為14cm,在它的四角各切去一個同樣的正方形,然后將四周突出部分沿虛線折起,就能制作一個無蓋的長方體盒子,如果這個無蓋的長方體底面積為160cm2,那么該長方體盒子體積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13mB=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖①,正方形的兩邊分別在正方形的邊上,連接.填空:線段的數(shù)量關系為________;直線所夾銳角的大小為________

2)如圖②,將正方形繞點順時針旋轉,在旋轉的過程中,(1)中的結論是否仍然成立,請說明理由.

3)把圖②中的正方形都換成菱形,且,如圖③,直接寫出______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】安全教育,警鐘長鳴,為此某校從14 000名學生中隨機抽取了200名學生就安全知識的了解情況進行問卷調(diào)查,然后按很好、較好、一般較差四類匯總分析,并繪制了扇形統(tǒng)計圖(如圖甲).

1)補全扇形統(tǒng)計圖,并計算這200名學生中對安全知識了解較好、很好的總人數(shù);

2)在圖乙中,繪制樣本頻數(shù)的條形統(tǒng)計圖;

3)根據(jù)以上信息,請?zhí)岢鲆粭l合理化建議.

查看答案和解析>>

同步練習冊答案