【題目】已知關(guān)于x的一元二次方程x2-2x-m2=0.
(1)求證:該方程有兩個不相等的實數(shù)根;
(2)若該方程有兩個實數(shù)根為x1,x2,且x1=2x2+5,求m的值.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)先計算判別式的值,然后根據(jù)整式的性質(zhì)判斷與0的關(guān)系,即可求證,
(2)根據(jù)一元二次方程根與系數(shù)關(guān)系可得: ,,由可得: ,所以,解得: ,再根據(jù),可得:
,即可求解m.
試題解析:(1)證明:∵b2-4ac=(-2)2-4(-m2)=4+4m2,
∵≥0,
∴4+4m2>0,
∴b2-4ac>0,
∴該方程有兩個不相等的實數(shù)根,
(2)由題意,得x1+x2=2,x1x2= -m2,
又∵x1=2x2+5,
∴x1=3,x2=-1,
∴-m2=-3,即m2=3,
解得m=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定個人發(fā)表文章、出版圖書獲得稿費的納稅計算方法是:(l)稿費不高于800元的不納稅;(2)稿費高于800元又不高于4000元的,減除其中的800元,其余部分按20%納稅:(3)稿費高于4000元,減除稿酬的20%,其余部分按20%納稅.今知丁老師獲得一筆稿費,并繳納個人所得稅600元,問:丁老師的這筆稿費有多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)用配方法推導(dǎo)一元二次方程ax2+bx+c=0(a≠0)的求根公式時,對于b2﹣4ac>0的情況,她是這樣做的:
由于a≠0,方程ax2+bx+c=0變形為:
x2+x=﹣,…第一步
x2+x+()2=﹣+()2,…第二步
(x+)2=,…第三步
x+=(b2﹣4ac>0),…第四步
x=,…第五步
嘉淇的解法從第 步開始出現(xiàn)錯誤;事實上,當(dāng)b2﹣4ac>0時,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點B的坐標為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別是邊BC,AB上的中點,連接DE并延長至點F,使EF=2DF,連接CE、AF.
(1)證明:AF=CE;
(2)當(dāng)∠B=30°時,試判斷四邊形ACEF的形狀并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋中裝有2個紅球(記為紅1、紅2),1個白球、1個黑球,這些球除顏色外都相同,將球攪勻.
(1)從中任意摸出1個球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出一個球,再從余下的3個球中任意摸出1個球,請用畫樹狀圖或列表法求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生參加公民道德知識競賽,將競賽所取得的成績(得分取整數(shù))進行整理后分成5組,并繪制成頻率分布直方圖,如下圖所示,請結(jié)合直方圖提供的信息,回答下列問題.
(1)該班共有多少名學(xué)生?
(2)60.5~70.5這一分數(shù)段的頻數(shù)、頻率分別是多少?
(3)根據(jù)統(tǒng)計圖,提出一個問題,并回答你所提出的問題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我國古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗證勾股定理.圖2是由圖1放入長方形內(nèi)得到的,∠BAC=90°,AB=6,AC=8,點D,E,F(xiàn),G,H,I都在長方形KLMJ的邊上,則長方形KLMJ的面積為(
A. 360 B. 400 C. 440 D. 484
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)m是何值時,關(guān)于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2
(1)是一元二次方程;
(2)是一元一次方程;
(3)若x=﹣2是它的一個根,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com