【題目】(1)如圖1,、是上的兩個(gè)點(diǎn),點(diǎn)在上,且是直角三角形,的半徑為1.
①請(qǐng)?jiān)趫D1中畫(huà)出點(diǎn)的位置;
②當(dāng)時(shí), ;
(2)如圖2,的半徑為5,、為外固定兩點(diǎn)(、、三點(diǎn)不在同一直線上),且,為上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不在直線上),以和為鄰邊作平行四邊形,求最小值并確定此時(shí)點(diǎn)的位置;
(3)如圖3,、是上的兩個(gè)點(diǎn),過(guò)點(diǎn)作射線,交于點(diǎn),若,,點(diǎn)是平面內(nèi)的一個(gè)動(dòng)點(diǎn),且,為的中點(diǎn),在點(diǎn)的運(yùn)動(dòng)過(guò)程中,求線段長(zhǎng)度的最大值與最小值.
【答案】(1)見(jiàn)解析;(2)4.(3)的最小值是,最大值是.
【解析】
(1)①根據(jù)圓周角定理作圖;
②根據(jù)直角三角形的性質(zhì)解答;
(2)根據(jù)平行四邊形的性質(zhì)得到BC=AP,根據(jù)線段的性質(zhì)計(jì)算;
(3)連接BC,根據(jù)勾股定理求出BC,根據(jù)直角三角形的性質(zhì)求出OA,根據(jù)三角形中位線定理求出OE,根據(jù)三角形的三邊關(guān)系解答即可.
解:(1)①如圖:P點(diǎn)為所求;
(2)∵四邊形是平行四邊形,
∴.
∴的最小值即的最小值.
∵當(dāng)為與的交點(diǎn)時(shí)最。
∴的最小值為,
即的最小值為4.
(3)連接,
∵,
∴,
∴是的直徑.
∵點(diǎn)是平面內(nèi)的一個(gè)動(dòng)點(diǎn),且,
∴點(diǎn)的運(yùn)動(dòng)路徑為以為圓心,以2為半徑的圓,
∵是的直徑,
∴是的中點(diǎn).
在直角中,.
∵是直角斜邊上的中點(diǎn),
∴.
∵是的中點(diǎn),是的中點(diǎn),
∴.
∴的最小值是,最大值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東從地出發(fā)以某一速度向地走去,同時(shí)小明從地出發(fā)以另一速度向地而行,如圖所示,圖中的線段、分別表示小東、小明離地的距離、(千米)與所用時(shí)間(小時(shí))的關(guān)系.
(1)寫(xiě)出、與的關(guān)系式:_______,_______;
(2)試用文字說(shuō)明:交點(diǎn)所表示的實(shí)際意義.
(3)試求出、兩地之間的距離.
(4)求出小東、小明相距4千米時(shí)出發(fā)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的四個(gè)頂點(diǎn)分別在矩形的各條邊上,,,.有以下四個(gè)結(jié)論:①;②;③;④矩形的面積是.其中正確的結(jié)論為( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,點(diǎn)D、E分別在邊AC、AB上,AD=14,點(diǎn)P是邊BC上一動(dòng)點(diǎn),當(dāng)PD+PE的值最小時(shí),AE=15,則BE為( )
A.30B.29C.28D.27
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)飛人蘇炳添以6秒47獲得2019年國(guó)際田聯(lián)伯明翰室內(nèi)賽男子60米冠軍,蘇炳添奪冠掀起跑步熱潮某校為了解該校八年級(jí)男生的短跑水平,全校八年級(jí)男生中隨機(jī)抽取了部分男生,對(duì)他們的短跑水平進(jìn)行測(cè)試,并將測(cè)試成績(jī)(滿(mǎn)分10分)繪制成如下不完整的統(tǒng)計(jì)圖表:
組別 | 成績(jī)/分 | 人數(shù)/人 |
A | 5 | 36 |
B | 6 | 32 |
C | 7 | 15 |
D | 8 | 8 |
E | 9 | 5 |
F | 10 | m |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)填空:m=_____,n=_____;
(2)所抽取的八年級(jí)男生短跑成績(jī)的眾數(shù)是_____分,扇形統(tǒng)計(jì)圖中E組的扇形圓心角的度數(shù)為____°;
(3)求所抽取的八年級(jí)男生短跑的平均成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗,小紅將這五位名人簡(jiǎn)介分別寫(xiě)在五張完全相同的知識(shí)卡片上.
(1)小哲從中隨機(jī)抽取一張,求卡片上介紹的人物是唐太宗的概率;
(2)用樹(shù)狀圖或列表法求小哲從中隨機(jī)抽取兩張,卡片上介紹的人物均是漢朝以后出生的概率.(注:唐太宗、宋太祖、成吉思汗均是漢朝以后出生)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn),若,且.
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)若點(diǎn)為x軸上一點(diǎn),是等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC為等腰直角三角形,AB=AC,△ADE為等腰直角三角形,AD=AE,點(diǎn)D在直線BC上,連接CE.
(1)判斷:①CE、CD、BC之間的數(shù)量關(guān)系;②CE與BC所在直線之間的位置關(guān)系,并說(shuō)明理由;
(2)若D在CB延長(zhǎng)線上,(1)中的結(jié)論是否成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,若不成立,請(qǐng)說(shuō)明理由;
(3)若D在BC延長(zhǎng)線上,(1)中的結(jié)論是否成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,若不成立,請(qǐng)寫(xiě)出你發(fā)現(xiàn)的結(jié)論,并計(jì)算:當(dāng)CE=10cm,CD=2cm時(shí),BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等腰三角形,,,點(diǎn)在邊上,點(diǎn)在邊上(點(diǎn)不與所在線段端點(diǎn)重合),,連接,射線,延長(zhǎng)交射線于點(diǎn),點(diǎn)在直線上,且.
(1)如圖,當(dāng)時(shí),請(qǐng)直接寫(xiě)出與的關(guān)系:_____;與的位置關(guān)系:_____.
(2)當(dāng),其他條件不變時(shí),的度數(shù)是多少?(用含的代數(shù)式表示)
(3)若是等邊三角形,,是邊上的三等分點(diǎn),直線與直線交于點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com