【題目】某市教育局為了了解初二學生每學期參加綜合實踐活動的情況,隨機抽樣調查了某校初二學生一個學期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,回答下列問題:
(1)扇形統(tǒng)計圖中a的值為 ;
(2)補全頻數(shù)分布直方圖;
(3)在這次抽樣調查中,眾數(shù)是 天,中位數(shù)是 天;
(4)請你估計該市初二學生每學期參加綜合實踐活動的平均天數(shù)約是多少?(結果保留整數(shù))
【答案】(1)20;(2)見解析;(3)4,4;(4)4(天).
【解析】
(1)由百分比之和為1可得;
(2)先根據(jù)2天的人數(shù)及其所占百分比可得總人數(shù),再用總人數(shù)乘以對應百分比分別求得3、5、7天的人數(shù)即可補全圖形;
(3)根據(jù)眾數(shù)和中位數(shù)的定義求解可得;
(4)根據(jù)加權平均數(shù)和樣本估計總體思想求解可得.
解:(1)a=100﹣(15+20+30+10+5)=20,
故答案為:20;
(2)∵被調查的總人數(shù)為30÷15%=200人,
∴3天的人數(shù)為200×20%=40人,
5天的人數(shù)為200×20%=40人,
7天的人數(shù)為200×5%=10人,
補全圖形如下:
(3)眾數(shù)是4天、中位數(shù)為=4天,
故答案為:4、4;
(4)估計該市初二學生每學期參加綜合實踐活動的平均天數(shù)約是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).
科目:初中數(shù)學 來源: 題型:
【題目】若一數(shù)軸上存在兩動點,當?shù)谝淮蜗嘤龊,速度都變(yōu)樵瓉淼膬杀,第二次相遇后又都能恢復到原來的速度,則稱這條數(shù)軸為魔幻數(shù)軸.
如圖,已知一魔幻數(shù)軸上有A,O,B三點,其中A,O對應的數(shù)分別為﹣10,0,AB為47個單位長度,甲,乙分別從A,O兩點同時出發(fā),沿數(shù)軸正方向同向而行,甲的速度為3個單位/秒,乙的速度為1個單位/秒,甲到達點B后以當時速度立即返回,當甲回到點A時,甲、乙同時停止運動.
問:(1)點B對應的數(shù)為 ,甲出發(fā) 秒后追上乙(即第一次相遇)
(2)當甲到達點B立即返回后第二次與乙相遇,求出相遇點在數(shù)軸上表示的數(shù)是多少?
(3)甲、乙同時出發(fā)多少秒后,二者相距2個單位長度?(請直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù),則下列結論正確的是( )
A. 其圖象分別位于第一、三象限
B. 當時,隨的增大而減小
C. 若點在它的圖象上,則點也在它的圖象上
D. 若點都在該函數(shù)圖象上,且,則
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】七年級開展演講比賽,學校決定購買一些筆記本和鋼筆作為獎品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價相同:筆記本定價為每本25元,鋼筆每支定價6元,但是他們的優(yōu)惠方案不同,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優(yōu)惠.已知七年級需筆記本20本,鋼筆x支(大于20支).問:
(1)在甲店購買需付款 元,在乙店購買需付款 元;
(2)若x=30,通過計算說明此時到哪家商店購買較為合算?
(3)當x=40時,請設計一種方案,使購買最省錢?算出此時需要付款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯,高為,底面周長為,在杯內離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達蜂蜜的最短距離為( ).
A. 15B. C. 12D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法,其中正確的有( 。
①如果a大于b,那么a的倒數(shù)小于b的倒數(shù);②若a與b互為相反數(shù),則=﹣;③幾個有理數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);④如果mx=my,那么x=y,
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中且,又、為的三等分點.
(1)求證;
(2)證明:;
(3)若點為線段上一動點,連接則使線段的長度為整數(shù)的點的個數(shù)________.(直接寫答案無需說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,拋物線交x軸于點A(l,0)、B(3,0),交y軸于點C.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點P為對稱軸右側第四象限拋物線上一點,連接PA并延長交y軸于點K,點P橫坐標為t,△PCK的面積為S,求S與t的函數(shù)關系式(直接寫出自變量t的取值范圍);
(3)如圖3,在(2)的條件下,過點A作AD⊥AP交y軸于點D.連接OP,過點O作OE⊥OP交AD延長線于點E,當OE=OP時,延長EA交拋物線于點Q,點M在直線EC上,連接QM,交AB于點H,將射線QM繞點Q逆時針旋轉45°,得到射線QN交AB于點F,交直線EC于點N,若AH:HF=3:5,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com