【題目】如圖所示,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點.
(1)求證:△BCD≌△ACE;
(2)若AD=3,BD=4,求DE的長.
【答案】(1)見解析;(2)5
【解析】
(1)根據(jù)同角的余角相等得到∠ACE=∠BCD,又夾這個角的兩邊分別是兩等腰直角三角形的腰,利用SAS即可證明;
(2)根據(jù)全等三角形的對應(yīng)邊相等、對應(yīng)角相等可以得到AE=BD,∠EAC=∠B=45°,所以△AED是直角三角形,利用勾股定理即可求出DE長度.
(1)證明:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,EC=DC.
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA,
∠ACB=∠ECD=90°,
∴∠ACE=∠BCD.
在△ACE和△BCD中
,
∴△ACE≌△BCD(SAS).
(2)由(1)得,∠CAE=∠B=45°,AE=BD=4,
又∠BAC=45°
∴∠EAD=∠EAC+∠BAC=90°,
即△EAD是直角三角形,
∴
∵AD=3
∴DE==5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,為正方形的外角的角平分線,點在線段上,過點作于點,連接,過點作于點,交射線于點.
()如圖1,若點與點重合.
①依題意補全圖1.
②判斷與的數(shù)量關(guān)系并加以證明.
()如圖2,若點恰好在線段上,正方形的邊長為,請寫出求長的思路(可以不寫出計算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點,DM與EN相交于點F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某長途汽車客運公司規(guī)定旅客可以免費攜帶一定質(zhì)量的行李,當(dāng)行李的質(zhì)量超過規(guī)定時,需付的行李費y(元)與行李質(zhì)量x(kg)之間的函數(shù)表達(dá)式為,這個函數(shù)的圖像如圖所示,求:
(1)k和b的值;
(2)旅客最多可免費攜帶行李的質(zhì)量;
(3)行李費為4~15元時,旅客攜帶行李的質(zhì)量為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無基本工資,僅以攬件提成計算工資.若當(dāng)日攬件數(shù)不超過40,每件提成4元;若當(dāng)日攪件數(shù)超過40,超過部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:
(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問題:
①估計甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請利用所學(xué)的統(tǒng)計知識幫他選擇,井說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD為AB邊上的高,AD=8,CD=4,BD=3.動點P從點A出發(fā),沿射線AB運動,速度為1個單位/秒,運動時間為t秒.
(1)當(dāng)t為何值時,△PDC≌△BDC;
(2)當(dāng)t為何值時,△PBC是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于點D,DE垂直平分線段AB.
(1)求∠A;
(2)若DE=2cm,BD=4cm,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com