【題目】如圖,ABC內(nèi)接于⊙O BC是⊙O 的直徑,點(diǎn)A是⊙O上的定點(diǎn),AD平分∠BAC交⊙O于點(diǎn)D,DGBC,交AC延長(zhǎng)線于點(diǎn)G.

1)求證:DG與⊙O相切;

2)作BEAD于點(diǎn)ECFAD于點(diǎn)F,試判斷線段BECF、EF三者之間的數(shù)量關(guān)系,并證明你的結(jié)論(不用尺規(guī)作圖的方法補(bǔ)全圖形).

【答案】1)見(jiàn)解析;(2BECF+EF,理由見(jiàn)解析。

【解析】

1)由AD平分∠BAC得到,再由垂徑定理可得DOBC,并進(jìn)一步得出DG與⊙O相切;

2)作BEAD于點(diǎn)ECFAD于點(diǎn)F,連接BD,CD.先證明BDEDCF,再由全等三角形的性質(zhì)可得出BECF+EF.因點(diǎn)A是⊙O上的定點(diǎn),故只需考慮圖中情況,不用考慮BECF-EF時(shí)的情況.

1)證明:如圖,連接DO并延長(zhǎng)到圓上一點(diǎn)N

AD平分∠BAC交⊙O于點(diǎn)D
∴∠BAD=DAC,

DOBC,
DGBC,
∴∠GDO=90°
DG與⊙O相切;

2BECF+EF,理由如下:

如圖,作BEAD于點(diǎn)E,CFAD于點(diǎn)F,連接BD,CD.

∴∠BED=DFC=90°

BC是直徑,

BD=CD, BDC=90°,

∴∠BDE=DCF

BDEDCF中,

BDEDCFAAS

DECFBEDF

DFDE+EF

BECF+EF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD中,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),EFAECD于點(diǎn)F,以AE,EF為邊作矩形AEFG,若AB=4,則點(diǎn)GAD距離的最大值是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,底邊BCCE、EG在同一直線上,且AB= ,BC=1,連結(jié)BF,分別交AC、DCDE于點(diǎn)P、Q、R

(1)求證:△BFG∽△FEG

(2)sin∠FBG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A的直線l分別與x軸、y軸交于點(diǎn)C,D

1)求直線l的函數(shù)表達(dá)式.

2Px軸上一點(diǎn),若PCD為等腰三角形直接寫(xiě)出點(diǎn)P的坐標(biāo).

3)將線段ABB點(diǎn)旋轉(zhuǎn)90°,直接寫(xiě)出點(diǎn)A對(duì)應(yīng)的點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在矩形ABCD中,O為AC的中點(diǎn),直線l經(jīng)過(guò)點(diǎn)B,且直線l繞著點(diǎn)B旋轉(zhuǎn),AMl于點(diǎn)M,CNl于點(diǎn)N,連接OM,ON

(1)當(dāng)直線l經(jīng)過(guò)點(diǎn)D時(shí),如圖1,則OM、ON的數(shù)量關(guān)系為 ;

(2)當(dāng)直線l與線段CD交于點(diǎn)F時(shí),如圖2(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由;

(3)當(dāng)直線l與線段DC的延長(zhǎng)線交于點(diǎn)P時(shí),請(qǐng)?jiān)趫D3中作出符合條件的圖形,并判斷(1)中的結(jié)論是否仍然成立?不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A-2,m)繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后,恰好落在圖中⊙P中的陰影區(qū)域(包括邊界)內(nèi),⊙P的半徑為1,點(diǎn)P的坐標(biāo)為(32),則m的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小婷家與學(xué)校之間是一條筆直的公路,小婷從家步行前往學(xué)校的途中發(fā)現(xiàn)忘記帶昨天的回家作業(yè)本,便向路人借了手機(jī)打給媽媽,媽媽接到電話后,帶上作業(yè)本馬上趕往學(xué)校,同時(shí)小婷沿原路返回兩人相遇后,小婷立即趕往學(xué)校,媽媽沿原路返回家,并且小婷到達(dá)學(xué)校比媽媽到家多用了5分鐘,若小婷步行的速度始終是每分鐘100米,小婷和媽媽之間的距離y與小婷打完電話后步行的時(shí)間x之間的函數(shù)關(guān)系如圖所示

媽媽從家出發(fā)______分鐘后與小婷相遇;

相遇后媽媽回家的平均速度是每分鐘______米,小婷家離學(xué)校的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量建筑物AC的高度,從距離建筑物底部C50米的點(diǎn)D(點(diǎn)D與建筑物底部C在同一水平面上)出發(fā),沿坡度i12的斜坡DB前進(jìn)10米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得建筑物頂部A的仰角為53°,求建筑物AC的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin53°≈0.798,cos53°≈0.602,tan53°≈1.327.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案