【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A.如圖1,展開后測得∠1=∠2
B.如圖2,展開后測得∠1=∠2且∠3=∠4
C.如圖3,測得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD
科目:初中數(shù)學 來源: 題型:
【題目】李明乘車回奶奶家,發(fā)現(xiàn)這條汽車線路上共有6個站(包括始發(fā)站和終點站),學習本節(jié)知識后,善于思考的小明已猜到這條線路上有多少種不同的票價,還要準備多少種不同的車票,聰明的你想到了嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①相反數(shù)等于它本身的數(shù)只有0;②倒數(shù)等于它本身的數(shù)有±1;③絕對值等于它本身的數(shù)是正數(shù);④平方等于它本身的數(shù)只有1;其中錯誤的有:( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC的邊BC的中垂線DM交∠BAC的平分線AD于D, DE⊥AB于點E,DF⊥AC于F.連接DB、DC
(1)求證:△DBE≌△DFC.
(2)求證:AB+AC=2AE
(3)如圖2,若△ABC的邊BC的中垂線DM交∠BAC的外角平分線AD于D, DE⊥AB于點E,且AB>AC,寫出AE、BE、AC之間的等量關系。(不需證明,只需在圖2中作出輔助線、說明證哪兩個三角形全等即可)。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,在Rt ΔABC中,∠ABC=900, AB=BC=2.
(1)用尺規(guī)作∠A的平分線AD.
(2)角平分線AD交BC于點D,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】證明定理:三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等,已知:
如圖,在△ABC中,分別作AB邊、BC邊的垂直平分線,兩線相交于點P,分別交AB邊、BC邊于點E、F.
求證:AB、BC、AC的垂直平分線相交于點P
證明:∵點P是AB邊垂直平線上的一點,
∴ = ( ).
同理可得,PB= .
∴ = (等量代換).
∴ (到一條線段兩個端點距離相等的點,在這條線段的 )
∴AB、BC、AC的垂直平分線 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com