【題目】甲、乙兩人同時(shí)從圓形跑道(圓形跑道的總長小于700m)上一直徑兩端A,B相向起跑.第一次相遇時(shí)離A點(diǎn)100m,第二次相遇時(shí)離B點(diǎn)60m,則圓形跑道的總長為( )
A.240mB.360mC.480mD.600m
【答案】C
【解析】
如圖所示,分兩種情況考慮:第一次相遇在C點(diǎn),則第二次相遇可在B點(diǎn)下方D點(diǎn)處或其上方點(diǎn)處,根據(jù)兩種情況分別列出方程求解即可.
如圖所示,設(shè)圓形跑道總長為2S,又設(shè)甲乙速度分別為x和y,
(1)當(dāng)甲乙第一次相遇在C點(diǎn),第二次相遇在B點(diǎn)下方D點(diǎn)處時(shí),
則:……①
……②
結(jié)合①與②得:,解得(舍去),,
∴,
經(jīng)檢驗(yàn)是原方程的解,
∴跑道長為480m;
(2)當(dāng)甲乙第一次相遇在C點(diǎn),第二次相遇在B點(diǎn)上方點(diǎn)處時(shí),
則:……③
……④
結(jié)合③與④得:,解得(舍去),,
∴,
經(jīng)檢驗(yàn)是原方程的解,
∵圓形跑道的總長小于700m,
∴舍去.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請?jiān)?/span>軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EF交AB于點(diǎn)E,交AC于點(diǎn)F.若D為BC邊的中點(diǎn),M為線段EF上一個(gè)動點(diǎn),則△BDM的周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為,.
(1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
(2)點(diǎn)到軸的距離是 ;
(3)請作出關(guān)于軸對稱的;
(4)寫出點(diǎn)的坐標(biāo) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家今年種植的“夏黑”葡萄喜獲豐收,采摘上市后若干天便全部銷完.小明對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(千克)與上市時(shí)間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時(shí)間每增加1天,日銷售量減少15千克.
(1)第16天的日銷售量是 千克.
(2)求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天津市奧林匹克中心體育場—“水滴”位于天津市西南部的奧林匹克中心內(nèi),某校九年級學(xué)生由距“水滴”10千米的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車先走,過了20分鐘后,其余同學(xué)乘汽車出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車的速度是騎車同學(xué)速度的2倍,求騎車同學(xué)的速度.
(1)設(shè)騎車同學(xué)的速度為x千米/時(shí),利用速度、時(shí)間、路程之間的關(guān)系填寫下表.(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)
速度(千米/時(shí)) | 所用時(shí)間(時(shí)) | 所走的路程(千米) | |
騎自行車 | x | 10 | |
乘汽車 | 10 |
(2)列出方程(組),并求出問題的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,
(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點(diǎn)P(1,b)
(1)求b,m的值
(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長為2,求a的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+的圖象與x軸、y軸分別交于A、B兩點(diǎn).直線l過點(diǎn)A且垂直于x軸.兩動點(diǎn)D、E分別從A B兩點(diǎn)間時(shí)出發(fā)向O點(diǎn)運(yùn)動(運(yùn)動到O點(diǎn)停止).運(yùn)動速度分別是每秒1個(gè)單位長度和個(gè)單位長度.點(diǎn)G、E關(guān)于直線l對稱,GE交AB于點(diǎn)F.設(shè)D、E的運(yùn)動時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),四邊形是菱形?判斷此時(shí)△AFG與AGB是否相似,并說明理由;
(2)當(dāng)△ADF是直角三角形時(shí),求△BEF與△BFG的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com