【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點AB、C,請在網(wǎng)格中進行下列操作:

(1)在圖中確定該圓弧所在圓的圓心D點的位置,并寫出點D點坐標為________.

(2)連接AD、CD,求⊙D的半徑及的長;

(3)有一點E(6,0),判斷點E與⊙D的位置關(guān)系.

【答案】(1)(2,0);(2)π;(3)點E在⊙D內(nèi)部.

【解析】

(1)找到AB,BC的垂直平分線的交點即為圓心坐標;

(2)利用勾股定理可求得圓的半徑;易得△AOD≌△DEC,那么∠OAD=CDE,即可得到圓心角的度數(shù)為90°,根據(jù)弧長公式可得;

(3)求出DE的長與半徑比較可得.

(1)如圖,D點坐標為(2,0),

故答案為:(2,0);

(2)AD=

CEx軸,垂足為E.

∵△AOD≌△DEC,

∴∠OAD=CDE,

又∵∠OAD+ADO=90°,

∴∠CDE+ADO=90°,

∴扇形DAC的圓心角為90度,

的長為π;

(3)點E到圓心D的距離為,

∴點E在⊙D內(nèi)部.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.

(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;

(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?

(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國高鐵迅猛發(fā)展,給我們的出行帶來極大的便捷,如圖1,是某種新設(shè)計動車車頭的縱截面一部分,曲線OBA是一開口向左,對稱軸正好是水平線OC的拋物線的一部分,點A、B是車頭玻璃罩的最高點和最低點,AC、BD是兩點到車廂底部的距離,OD=1.5米,BD=1.5米,AC=3米,請你利用所學(xué)的函數(shù)知識解決以下問題.

1)為了方便研究問題,需要把曲線OBA繞點O旋轉(zhuǎn)轉(zhuǎn)化為我們熟悉的函數(shù),請你在所給的方框內(nèi),畫出你旋轉(zhuǎn)后函數(shù)圖象的草圖,在圖中標出點O、A、B、C、D對應(yīng)的位置,并求你所畫的函數(shù)的解析式.

2)如圖2,駕駛員座椅安裝在水平線OC上一點P處,實驗表明:當PA+PB最小時,駕駛員駕駛時視野最佳,為了達到最佳視野,求OP的長.

3)駕駛員頭頂?shù)讲Aд值母叨戎辽贋?/span>0.3米才感到壓抑,一個駕駛員坐下時頭頂?shù)揭蚊娴木嚯x為1米,在(2)的情況下,座椅最多條件到多少時他才感到舒適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4a經(jīng)過A(﹣1,0)、C(0,4)兩點,與x軸交于另一點B.

(1)求拋物線的解析式;

(2)求拋物線的頂點坐標

(3)已知點D(m,m+1)在第一象限的拋物線上,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2 - 4所示,長方形ABCD的長為5 cm,寬為4 cm,如果將它的長和寬都減去x(cm),那么它剩下的小長方形AB′C′D′的面積為y(cm2)

(1)寫出yx的函數(shù)關(guān)系式;

(2)上述函數(shù)是什么函數(shù)?

(3)自變量x的取值范圍是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.

(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,AB=BC,B=∠C=90°PBC邊上一點,APPD,EAB邊上一點,BPE=∠BAP

1 如圖1,若AE=PE,直接寫出=______

2 如圖2,求證:AP=PDPE;

3 如圖3,當AE=BP時,連BD,則=______,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=x2+bx(b>2)上存在關(guān)于直線y=x成軸對稱的兩個點,則b的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)x-1290;

(2)3x+5=x+52;

(3)x26x550;

(4)2x(x3)10

查看答案和解析>>

同步練習(xí)冊答案