計(jì)算:|-2|+2sin30°-(-2+(tan45°)-1
【答案】分析:本題涉及絕對(duì)值、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式化簡四個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.
解答:解:原式=2+1-3+1=1.
點(diǎn)評(píng):本題考查實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計(jì)算題型.解決此類題目的關(guān)鍵是熟記特殊角的三角函數(shù)值,熟練掌握負(fù)整數(shù)指數(shù)冪、二次根式、絕對(duì)值等考點(diǎn)的運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)閱讀材料:求1+2+22+23+24+…+22013的值.
解:設(shè)S=1+2+22+23+24+…+22012+22013,將等式兩邊同時(shí)乘以2得:
   2S=2+22+23+24+25+…+22013+22014
   將下式減去上式得2S-S=22014-1
   即S=22014-1
   即1+2+22+23+24+…+22013=22014-1
請(qǐng)你仿照此法計(jì)算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,則2s=2+22+23+24…+22013,因此2s-s=22013-1,所以1+2+22+23+…+22012=22013-1.仿照以上推理,計(jì)算1+5+52+53+…+52013的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列解題過程:
計(jì)算 1+3+32+33+34+…+39+310的值.
解:設(shè)S=1+3+32+33+34+…+39+310①,
則3S=3×(1+3+32+33+…+39+310
3S=3×1+3×3+3×32+3×33+…+3×39+3×310
3S=3+32+33+34+…+310+311②,
②-①得:
3S-S=(3+32+33+34+…+39+310+311)-(1+3+32+33+34+…+39+310
2S=311-1s=
311-1
2
即1+3+32+33+34+…+39+310=
311-1
2

通過閱讀,你一定學(xué)到了一種解決問題的方法.
請(qǐng)用你學(xué)到的方法計(jì)算:1+5+52+53+54+…+524+525

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,則2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理計(jì)算出1+3+32+33+…+32010的值是
S=
32011-1
2
S=
32011-1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省期中題 題型:計(jì)算題

計(jì)算:(2s+1)﹣3(s2﹣s+2).

查看答案和解析>>

同步練習(xí)冊答案