【題目】下列命題中,真命題是( ).

(A)周長相等的銳角三角形都全等; (B) 周長相等的直角三角形都全等;

(C)周長相等的鈍角三角形都全等; (D) 周長相等的等腰直角三角形都全等.

【答案】D

【解析】全等三角形必須是對應(yīng)角相等,對應(yīng)邊相等,根據(jù)全等三角形的判定方法,逐一檢驗.

解答:解:A、周長相等的銳角三角形的對應(yīng)角不一定相等,對應(yīng)邊也不一定相等,假命題;
B、周長相等的直角三角形對應(yīng)銳角不一定相等,對應(yīng)邊也不一定相等,假命題;
C、周長相等的鈍角三角形對應(yīng)鈍角不一定相等,對應(yīng)邊也不一定相等,假命題;
D、由于等腰直角三角形三邊之比為1:1:,故周長相等時,等腰直角三角形的對應(yīng)角相等,對應(yīng)邊相等,故全等,真命題.
故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在測量樓高時,先測出樓房落在地面上的影長BA為15米(如圖),然后在A處樹立一根高2米的標(biāo)桿,測得標(biāo)桿的影長AC為3米,則樓高為( 。
A.10米
B.12米
C.15米
D.22.5米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)·兒童節(jié)前,某玩具商店根據(jù)市場調(diào)查,用2500元購進(jìn)一批兒童玩

具,上市后很快脫銷,接著又用4500元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5

倍,但每套進(jìn)價多了10元.

1)求第一批玩具每套的進(jìn)價是多少元?

2)如果這兩批玩具每套售價相同,且全部售完后總利潤不低于25%,那么每套售價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足同學(xué)們課外閱讀的需求,某中學(xué)圖書館向出版社郵購科普系列圖書,每本書單價為16元,書的價錢和郵費是通過郵局匯款,相關(guān)的書價折扣、郵費和匯款的匯費如下表所示(總費用=總書價+總郵費+總匯費)

購書數(shù)量

折扣

郵費

匯費

不超過10

九折

6

100元匯款需匯費1

(匯款不足100元時按100元匯款收匯費)

超過10

八折

總書價的10%

100元匯款需匯費1

(匯款不足100元的部分不收匯費)

(1)若一次郵購7本,共需總費用為   元.

(2)已知學(xué)校圖書館需購圖書的總數(shù)是10的整倍數(shù),且超過10本.

①若分次郵購,分別匯款,每次郵購10本,總費用為1064元時,共郵購了多本圖書?

②若你是學(xué)校圖書館負(fù)責(zé)人,從節(jié)約的角度出發(fā),在每次郵購10一次性郵購這兩種方式中選擇一種,你會選擇哪一種?計算并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點P是線段AD上一動點,OBD的中點,PO的延長線交BC于點Q。

(1)求證:OP=OQ;

(2)若AD=8cm,AB=6cm,P從點A出發(fā),以1cm/秒的速度向點D運動(不與點D重合),設(shè)點P運動時間為t秒,請用t表示PD的長;并求當(dāng)t為何值時,四邊形PBQD是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒灒龑⒑凶永锩娴那驍噭蚝髲闹须S機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

200

300

500

800

1000

3000

摸到白球的次數(shù)m

65

124

178

302

481

599

1803

摸到白球的頻率=

0.65

0.62

0.593

0.604

0.601

0.599

0.601


(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近多少?(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)是多少?
(3)試估算盒子里黑、白兩種顏色的球各有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料: 在學(xué)習(xí)《圓》這一章時,老師給同學(xué)們布置了一道尺規(guī)作圖題:


小敏的作法如下:
如圖,
①鏈接op,做線段op的垂直平分線MN,交OP于點C
②以點C為圓心,CO的長為半徑作圓,交⊙O于A、B兩點
③作直線PA、PB所以直線PA,PB就是所求的切線

老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,且AB= .點C,E分別在⊙O上,且OC⊥AB于點D,∠E=30°,連接OA.
(1)求OA的長;
(2)若AF是⊙O的另一條弦,且點O到AF的距離為 ,直接寫出∠BAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】回答問題:

(1)已知∠AOB的度數(shù)為54°,在∠AOB的內(nèi)部有一條射線OC,滿足∠AOC=∠COB,在∠AOB所在平面上另有一條射線OD,滿足∠BOD=∠AOC,如圖1和圖2所示,求∠COD的度數(shù).

(2)已知線段AB長為12cm,點C是線段AB上一點,滿足AC=CB,點D是直線AB上滿足BD=AC.請畫出示意圖,求出線段CD的長.

查看答案和解析>>

同步練習(xí)冊答案