【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,m)是第一象限內(nèi)一點(diǎn),連接OA,將OA繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AB,若反比例函數(shù)y= (x>0)的圖象恰好同時(shí)經(jīng)過點(diǎn)A、B,則k的值為

【答案】2+2
【解析】解:過A作AE⊥x軸,過B作BD⊥AE,

∵∠OAB=90°,

∴∠OAE+∠BAD=90°,

∵∠AOE+∠OAE=90°,

∴∠BAD=∠AOE,

在△AOE和△BAD中,

∴△AOE≌△BAD(AAS),

∴AE=BD=m,OE=AD=2,

∴DE=m﹣2,OE+BD=m+2,

則B(m+2,m﹣2);

∵A與B都在反比例圖象上,得到2m=(m+2)(m﹣2),

解得:m=1+ (負(fù)值舍去),

∴A(2,1+ ),

∴k=2+2

所以答案是:2+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)雙十二購(gòu)物狂歡節(jié)活動(dòng),某零食店推出了甲、乙、丙三類餅干禮包,已知甲、乙、丙三類禮包均由、三種餅干搭配而成,每袋禮包的成本均為、三種餅干成本之和.每袋甲類禮包有5種餅干、2種餅干、8種餅干;每袋丙類禮包有7種餅干、1種餅干、4種餅干.已知甲每袋成本是該袋中種餅干成本的3倍,利潤(rùn)率為,每袋乙的成本是其售價(jià)的,利潤(rùn)是每袋甲利潤(rùn)的;每袋丙禮包利潤(rùn)率為.若該網(wǎng)店1212日當(dāng)天銷售甲、乙、丙三種禮包袋數(shù)之比為,則當(dāng)天該網(wǎng)店銷售總利潤(rùn)率為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲船勻速順流而下從港到港,同時(shí)乙船勻速逆流而上從港到港,港處于兩港的正中間,某個(gè)時(shí)刻,甲船接到通知需立即掉頭逆流而上到處,到處后迅速按原順流速度駛向港,最后甲、乙兩船都到達(dá)了各自的目的地.甲、乙兩船在靜水中的速度相同,設(shè)甲、乙兩船與港的距離之和為,行駛時(shí)間為,的部分關(guān)系如圖,則當(dāng)兩船在、間某處相超時(shí),兩船距離港的距離為________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).

(1)求梯子底端B外移距離BD的長(zhǎng)度;

(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知⊙A經(jīng)過點(diǎn)E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去文具店買文具,他與售貨員的對(duì)話如下:

小明:你好.我要購(gòu)買5支黑色水筆和3本筆記本.

售貨員:好的.那你應(yīng)該付34元.

小明:我把兩種文具的單價(jià)弄反了,以為要付46元.

(1)求小明所購(gòu)買的黑色水筆和筆記本的單價(jià);

(2)如果小紅也去購(gòu)買同樣的黑色水筆和筆記本,預(yù)算費(fèi)用不超過88元,并且購(gòu)買筆記本的數(shù)量要比購(gòu)買黑色水筆的數(shù)量多1,那么小紅最多能購(gòu)買多少本筆記本?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“湘一四邊形”.

1)已知:如圖1,四邊形是“湘一四邊形”,,,.則 , ,若,,則 (直接寫答案)

2)已知:在“湘一四邊形”中,,,.求對(duì)角線的長(zhǎng)(請(qǐng)畫圖求解),

3)如圖(2)所示,在四邊形中,若,當(dāng)時(shí),此時(shí)四邊形是否是“湘一四邊形”,若是,請(qǐng)說明理由:若不是,請(qǐng)進(jìn)一步判斷它的形狀,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)解析式為y=2x2,直線l1x軸交于點(diǎn)D.直線l2y=kx+bx軸交于點(diǎn)A,且經(jīng)過點(diǎn)B3,1),如圖所示.直線l1、l2交于點(diǎn)Cm,2).

1)求點(diǎn)D、點(diǎn)C的坐標(biāo);

2)求直線l2的函數(shù)解析式;

3)利用函數(shù)圖象寫出關(guān)于x、y的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CAB=40°,連接BD,OD,則∠AOD+∠ABD的度數(shù)為( )

A.100°
B.110°
C.120°
D.150°

查看答案和解析>>

同步練習(xí)冊(cè)答案