【題目】如圖1,長方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.點E為射線DC上的一個動點,把△ADE沿直線AE翻折得△AD′E.
(1)當(dāng)D′點落在AB邊上時,∠DAE= °;
(2)如圖2,當(dāng)E點與C點重合時,D′C與AB交點F,
①求證:AF=FC;②求AF長.
(3)連接D′B,當(dāng)∠AD′B=90°時,求DE的長.
【答案】(1)45;(2)①見解析;②AF=6.8;(3)DE=2或18.
【解析】
(1)由△ADE≌△AD′E知∠DAE=∠D′AE,結(jié)合D′點落在AB邊上知∠DAE+∠D′AE=90°,從而得出答案;
(2)①由折疊得出∠ACD=∠ACD′,再由AB∥CD得出∠ACD=∠BAC,從而得知∠ACD′=∠BAC,據(jù)此即可得證;
②設(shè)AF=FC=x,則BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得到關(guān)于x的方程,解之可得;
(3)分兩種情況:點E在DC線段上,點E為DC延長線上的一點,進一步分析探討得出答案即可.
解:(1)由題意知△ADE≌△AD′E,
∴∠DAE=∠D′AE,
∵D′點落在AB邊上時,∠DAE+∠D′AE=90°,
∴∠DAE=∠D′AE=45°,
故答案為:45;
(2)①如圖2,由題意知∠ACD=∠ACD′,
∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠ACD=∠BAC,
∴∠ACD′=∠BAC,
∴AF=FC;
②設(shè)AF=FC=x,則BF=10﹣x,
在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,
解得x=6.8,即AF=6.8;
(3)如圖3,
∵△AD′E≌△ADE,
∴∠AD′E=∠D=90°,
∵∠AD′B=90°,
∴B、D′、E三點共線,
又∵△ABD′∽△BEC,AD′=BC,
∴△ABD′≌△BEC,
∴BE=AB=10,
∵BD′===8,
∴DE=D′E=10﹣8=2;
如圖4,
∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,
∴∠CBE=∠BAD″,
在△ABD″和△BEC中,
∵,
∴△ABD″≌△BEC,
∴BE=AB=10,
∴DE=D″E=8+10=18.
綜上所知,DE=2或18.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列命題:①相等的角是對頂角;②互補的角就是平角;③互補的兩個角一定是一個銳角,另一個為鈍角:④平行于同一條直線的兩直線平行;⑤兩條平行線被第三條直線所截,同旁內(nèi)角的角平分線互相垂直.其中,正確命題的個數(shù)為( )
A.0B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,A、C、F、D在同一直線上,AF=DC,AB∥DE,AB=DE.
求證:(1) △ABC≌△DEF;
(2)BC∥EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,點A、B、C在小正方形的頂點上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對稱的△AB′C′;
(2)在直線l上找一點P,使PB′+PC的長最短;
(3)若△ACM是以AC為腰的等腰三角形,點M在小正方形的頂點上.這樣的點M共有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電子超市銷售甲、乙兩種型號的藍牙音箱,每臺進價分別為240元,140元,下表是近兩周的銷售情況:(銷售收入=銷售單價×銷售數(shù)量)
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
甲種型號 | 乙種型號 | ||
第一周 | 3臺 | 7臺 | 2160元 |
第二周 | 5臺 | 14臺 | 4020元 |
求甲、乙兩種型號藍牙音箱的銷售單價.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級共有500名學(xué)生,在“世界讀書日”前夕,開展了“閱讀助我成長”的讀書活動.為了解該年級學(xué)生在此次活動中課外閱讀情況,童威隨機抽取m名學(xué)生,調(diào)查他們課外閱讀書籍的數(shù)量,將收集的數(shù)據(jù)整理成如下統(tǒng)計表和扇形圖.
學(xué)生讀書數(shù)量統(tǒng)計表
閱讀量/本 | 學(xué)生人數(shù) |
1 | 15 |
2 | a |
3 | b |
4 | 5 |
(1)直接寫出m、a、b的值;
(2)估計該年級全體學(xué)生在這次活動中課外閱讀書籍的總量大約是多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:在一個三角形中,如果一個角的度數(shù)是另一個角度數(shù)的3倍,那么這樣的三角形我們稱之為“和諧三角形”.如:三個內(nèi)角分別為105°,40°,35°的三角形是“和諧三角形”
概念理解:如圖1,∠MON=60°,在射線OM上找一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O,B重合)
(1)∠ABO的度數(shù)為______,△AOB______(填“是”或“不是”)“和諧三角形”;
(2)若∠ACB=80°,求證:△AOC是“和諧三角形”.
應(yīng)用拓展:(3)如圖2,點D在△ABC的邊AB上,連接DC,作∠ADC的平分線交AC于點E,在DC上取點F,使∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“和諧三角形”,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù),,的平均數(shù)為4,方差為3,那么數(shù)據(jù),,的平均數(shù)和方差分別是( )
A. 4, 3 B. 6 3 C. 3 4 D. 6 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連結(jié)AD,BD,則下列結(jié)論:①AD=BC;②BD,AC互相平分;③四邊形ACED是菱形;④BD=BE;其中正確的個數(shù)是( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com