【題目】某公司員工分別住在三個住宅區(qū),區(qū)有人,區(qū)有人,區(qū)有人.三個區(qū)在一條直線上,位置如圖所示.公司的接送打算在此間只設(shè)一個?奎c(diǎn),要使所有員工步行到?奎c(diǎn)的路程總和最少,那么停靠點(diǎn)的位置應(yīng)在(

A.區(qū)B.區(qū)C.區(qū)D.不確定

【答案】A

【解析】

根據(jù)題意分別計算?奎c(diǎn)分別在各點(diǎn)是員工步行的路程和,選擇最小的即可解

解:∵當(dāng)停靠點(diǎn)在A區(qū)時,所有員工步行到停靠點(diǎn)路程和是:15×100+10×300=4500m;

當(dāng)停靠點(diǎn)在B區(qū)時,所有員工步行到?奎c(diǎn)路程和是:30×100+10×200=5000m;

當(dāng)?奎c(diǎn)在C區(qū)時,所有員工步行到停靠點(diǎn)路程和是:30×300+15×200=12000m

∴當(dāng)?奎c(diǎn)在A區(qū)時,所有員工步行到?奎c(diǎn)路程和最小,那么?奎c(diǎn)的位置應(yīng)該在A區(qū).

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料

在數(shù)學(xué)課上,老師提出如下問題:

己知:已知:RtABC,ABC=90°.

求作:矩形ABCD.

小敏的作法如下:

①以A為圓心,BC長為半徑作弧,以C為圓心,AB長為半徑作弧,兩弧相交于點(diǎn)D;

②連接DADC;所以四邊形ABCD為所求矩形.

老師說:“小敏的作法正確.”

請回答:小敏的作法正確的理由是____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點(diǎn)PA出發(fā),沿A→B→C→D的路線運(yùn)動,到D停止;點(diǎn)QD點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動,到A點(diǎn)停止.若P、Q兩點(diǎn)同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點(diǎn)同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動時間x(秒)的圖象.

(1)求出a值;

(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運(yùn)動時間x(秒)的關(guān)系式;

(3)P、Q兩點(diǎn)都在BC邊上,x為何值時P、Q兩點(diǎn)相距3cm?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(-2,0)、(0,4).動點(diǎn)P從O出發(fā),沿x軸正方向以每秒1個單位的速度運(yùn)動,同時動點(diǎn)C以每秒2個單位的速度在y軸上從點(diǎn)B出發(fā)運(yùn)動到點(diǎn)O停止,點(diǎn)C停止運(yùn)動時點(diǎn)P也隨之停止運(yùn)動.以CP、CO為鄰邊構(gòu)造PCOD,在線段OP的延長線長取點(diǎn)E,使得PE=2.設(shè)點(diǎn)P的運(yùn)動時間為t秒.

(1)求證:四邊形ADEC是平行四邊形

(2)以線段PE為對角線作正方形MPNE,點(diǎn)M、N分別在第一、四象限.

①當(dāng)點(diǎn)M、N中有一點(diǎn)落在四邊形ADEC的邊上時,求出所有滿足條件的t的值;

②若點(diǎn)M、N中恰好只有一點(diǎn)落在四邊形ADEC的內(nèi)部(不包括邊界)時,設(shè)PCOD的面積為S,直接寫出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M在y軸上運(yùn)動.

(1)求直線AB的函數(shù)解析式;

(2)動點(diǎn)M在y軸上運(yùn)動,使MA+MB的值最小,求點(diǎn)M的坐標(biāo);

(3)在y軸的負(fù)半軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】冰封文教店用1200元購進(jìn)了甲、乙兩種鋼筆,已知甲種鋼筆進(jìn)價為每支12元,乙種鋼筆進(jìn)價為每支10元。在銷售時甲種鋼筆售價為每支15元,乙種鋼筆售價為每支12元,全部售完后共獲利270元。

(1)求冰封文教店購進(jìn)甲、乙兩種鋼筆各多少支?

(2)冰封文教店以原價再次購進(jìn)甲、乙兩種鋼筆,且購進(jìn)甲種鋼筆的數(shù)量不變,而購進(jìn)乙種鋼筆的數(shù)量是第一次的2倍,乙種鋼筆按原售價銷售,而甲種鋼筆降價銷售,當(dāng)兩種鋼筆銷售完畢時,要使再次購進(jìn)的鋼筆獲利不少于340元,甲種鋼筆每支最低售價應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王偉準(zhǔn)備用一段長30米的籬笆圍成一個三角形形狀的小圈,用于飼養(yǎng)家兔.已知第一條邊長為a米,由于受地勢限制,第二條邊長只能是第一條邊長的2倍多2米.

1)請用a表示第三條邊長;

2)問第一條邊長可以為7米嗎?請說明理由,并求出a的取值范圍;

3)能否使得圍成的小圈是直角三角形形狀,且各邊長均為整數(shù)?若能,說明你的圍法;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知AB是⊙O 的直徑,C是⊙O 上一點(diǎn),∠ACB的平分線交⊙O 于點(diǎn)D,PDAB,交CA的延長線于點(diǎn)P.連結(jié)AD,BD.

求證:(1)PD是⊙O 的切線;

(2)△PAD△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進(jìn)價的50%標(biāo)價.已知按標(biāo)價九折銷售該型號自行車8輛與將標(biāo)價直降100元銷售7輛獲利相同.

(1)求該型號自行車的進(jìn)價和標(biāo)價分別是多少元?

(2)若該型號自行車的進(jìn)價不變,按(1)中的標(biāo)價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案