【題目】在平面直角坐標(biāo)系xOy中,對于P,Q兩點給出如下定義:若點P到x,y軸的距離中的最大值等于點Q到x,y軸的距離中的最大值,則稱P,Q兩點為“等距點”圖中的P,Q兩點即為“等距點”.
(1)已知點A的坐標(biāo)為.①在點中,為點A的“等距點”的是________;②若點B的坐標(biāo)為,且A,B兩點為“等距點”,則點B的坐標(biāo)為________.
(2)若兩點為“等距點”,求k的值.
【答案】(1)①E,F. ②;(2)或.
【解析】
(1)①找到E、F、G中到x、y軸距離最大為3的點即可;
②先分析出直線上的點到x、y軸距離中有3的點,再根據(jù)“等距點”概念進行解答即可;
(2)先分析出直線上的點到x、y軸距離中有4的點,再根據(jù)“等距點”概念進行解答即可.
解:(1)①點到x,y軸的距離中的最大值為3,
與點A是“等距點”的點是E,F.
②點B坐標(biāo)中到x,y軸距離中,至少有一個為3的點有,
這些點中與點A符合“等距點”的定義的是.
故答案為①E,F;②.
(2)兩點為“等距點”.
若,則或,
解得(舍去)或.
若時,則,
解得(舍去)或.
根據(jù)“等距點”的定義知或符合題意.
即k的值是1或2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結(jié)論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當(dāng)時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結(jié)論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,晚上小亮在廣場上乘涼,圖中線段AB表示站在廣場上的小亮,線段PO表示直立在廣場上的燈桿,點P表示照明燈.
請你再圖中畫出小亮在照明燈P照射下的影子BC;
如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m,請求出小亮影子的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)如圖所示,二次函數(shù)y=-mx2+4m的頂點坐標(biāo)為(0,2),矩形ABCD的頂點B,C在x軸上,A、D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi),且點A在點D的左側(cè).
(1)求二次函數(shù)的解析式;
(2)設(shè)點A的坐標(biāo)為(x,y),試求矩形ABCD的周長p關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點為直線上的一個動點(與點不重合),分別作和的角平分線,兩角平分線所在直線交于點.
(1)若點在線段上,如圖1.
①依題意補全圖1;
②求的度數(shù);
(2)當(dāng)點在直線上運動時,的度數(shù)是否變化?若不變,請說明理由;若變化,畫出相應(yīng)的圖形,并直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學(xué)家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設(shè)直角三角形的兩條直角邊長度分別是和,斜邊長度是,那么可以用數(shù)學(xué)語言表達:.
(1)在圖②,若,,則 ;
(2)觀察圖②,利用面積與代數(shù)恒等式的關(guān)系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;
(3)如圖③所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8,BC=10,利用上面的結(jié)論求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A(a,0)和B(0,b)滿足,分別過點A、B作x軸、y軸的垂線交于點C,如圖,點P從原點出發(fā),以每秒2個單位長度的速度沿著O-B-C-A-O的路線移動.
(1)寫出A、B、C三點的坐標(biāo);
(2)當(dāng)點P移動了6秒時,描出此時P點的位置,并寫出點P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點,將線段BP向下平移h個單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長分成相等的兩部分,求h的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在□ABCD內(nèi)部,AF∥BE,DF∥CE.
(1)求證:△BCE≌△ADF;
(2)設(shè)□ABCD的面積為20,求四邊形AEDF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,如果BD,CE分別是∠ABC,∠ACB的平分線且他們相交于點P,設(shè)∠A=n°.
(1)求∠BPC的度數(shù)(用含n的代數(shù)式表示),寫出推理過程.
(2)當(dāng)∠BPC=125°時,∠A= .
(3)當(dāng)n=60°時,EB=7,BC=12,DC的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com