【題目】已知:△ABC是⊙O的內(nèi)接正三角形,P為弧BC上一點(與點B、C不重合),
(1)如果點P是弧BC的中點,求證:PB+PC=PA;
(2)如果點P在弧BC上移動時,(1)的結(jié)論還成立嗎?請說明理由.
【答案】(1)詳見解析;(2)結(jié)論成立,理由詳見解析.
【解析】
(1)連OB,OC,由點P是弧BC的中點,△ABC是⊙O的內(nèi)接正三角形,根據(jù)垂徑定理的推論得到AP為⊙O的直徑,易得△OBP和△OPC都是等邊三角形,于是得到結(jié)論;
(2)截取PE=PC,則△PEC為等邊三角形,得到CE=CP,∠PCE=60°,易證△CAE≌△CBP,得到AE=PB,即有PB+PC=PA.
(1)連OB,OC,如圖
∵點P是弧BC的中點,△ABC是⊙O的內(nèi)接正三角形,
∴AP為⊙O的直徑,
∴∠BPO=∠ACB,∠APC=∠ABC,
∵△ABC是⊙O的內(nèi)接正三角形,
∴∠ACB=∠ABC=60°,
∴∠BPO=∠APC=60°,
∴△OBP和△OPC都是等邊三角形,
∴PB=PC=OP=OA,
∴PB+PC=PA;
(2)(1)的結(jié)論還成立.理由如下:
截取PE=PC,
∵∠APC=60°,
∴△PEC為等邊三角形,
∴CE=CP,∠PCE=60°,
而∠ACB=60°,
∴∠ACE=∠BCP,
而CA=CB,
∴△CAE≌△CBP,
∴AE=PB,
∴PB+PC=PA.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E,F分別在正方形ABCD的邊CD,BC上,且,點P在射線BC上(點P不與點F重合).將線段EP繞點E順時針旋轉(zhuǎn)得到線段EG,過點E作GD的垂線QH,垂足為點H,交射線BC于點Q.
(1)如圖1,若點E是CD的中點,點P在線段BF上,線段BP,QC,EC的數(shù)量關(guān)系為________.
(2)如圖2,若點E不是CD的中點,點P在線段BF上,判斷(1)中的結(jié)論是否仍然成立.若成立,請寫出證明過程;若不成立,請說明理由.
(3)正方形ABCD的邊長為6,,,請直接寫出線段BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點的直線與反比例函數(shù)y=(x>0)、反比例函數(shù)y=(x>0)的圖象分別交于A、B兩點,過點A作y軸的平行線交反比例函數(shù)y=(x>0)的圖象于C點,以AC為邊在直線AC的右側(cè)作正方形ACDE,點B恰好在邊DE上,則正方形ACDE的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖像如圖所示,下列結(jié)論:(1)a+b+c=0(2)a-b+c>0(3)abc>0(4)b=-2a;其中正確的結(jié)論個數(shù)有其中正確的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于 x 的方程 2x2+kx﹣1=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是﹣1,求另一個根及 k 值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某商品進(jìn)價每件 40 元,現(xiàn)售價每件 60 元,每星期可賣出 300 件,經(jīng)市場調(diào)查反映,每次漲價 1 元,每星期可少賣 10 件
(1)要想獲利 6090 元的利潤,該商品應(yīng)定價多少元?
(2)能否獲利 7000 元,試說明理由?
(3)該商品應(yīng)定價多少元時,獲利最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與反比例函數(shù)y=(k≠0)的圖象交于A(1,m)和點B.
(1)求m,k的值,并直接寫出點B的坐標(biāo);
(2)過點P(t,0)(-1≤t≤1)作x軸的垂線分別交直線y=3x與反比函數(shù)y=(k≠0)的圖象于點E,F.
①當(dāng)t=時,求線段EF的長;
②若0<EF≤8,請根據(jù)圖象直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com