【題目】已知二次函數(shù)的圖像如圖所示,下列結(jié)論:(1)a+b+c=0(2)a-b+c>0(3)abc>0(4)b=-2a;其中正確的結(jié)論個數(shù)有其中正確的個數(shù)是( )
A. B. C. D.
【答案】B
【解析】
(1)由拋物線過點(1,0),即可得出a+b+c=0,結(jié)論(1)正確;(2)由當(dāng)x=-1時,y>0,即可得出a-b+c>0,結(jié)論(2)正確;(3)由拋物線的開口方向、對稱軸以及與y軸交點的位置,即可得出a<0、b<0、c>0,進而即可得出abc>0,結(jié)論(3)正確;(4)由拋物線對稱軸為直線x=-1,即可得出b=2a,結(jié)論(4)錯誤.綜上即可得出結(jié)論.
解:(1)∵點(1,0)在二次函數(shù)圖象上,
∴a+b+c=0,結(jié)論(1)正確;
(2)∵當(dāng)x=-1時,y>0,
∴a-b+c>0,結(jié)論(2)正確;
(3)∵拋物線開口向下,對稱軸為直線x=-1,拋物線與y軸的交點在y軸正半軸,
∴a<0,-=-1,c>0,
∴a<0,b<0,c>0,
∴abc>0,結(jié)論(3)正確;
(4)∵拋物線對稱軸為直線x=-1,
∴-=-1,
∴b=2a,結(jié)論(4)錯誤.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,E是BC邊上的一點,將矩形ABCD沿折痕AE折疊,使得頂點B落在CD邊上的點P處,PC=4(如圖1).
(1)求AB的長;
(2)擦去折痕AE,連結(jié)PB,設(shè)M是線段PA的一個動點(點M與點P、A不重合).N是AB沿長線上的一個動點,并且滿足PM=BN.過點M作MH⊥PB,垂足為H,連結(jié)MN交PB于點F(如圖2).
①若M是PA的中點,求MH的長;
②試問當(dāng)點M、N在移動過程中,線段FH的長度是否發(fā)生變化?若變化,說明理由;若不變,求出線段FH的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻EF最長可利用28米),圍成一個矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻).現(xiàn)有砌60米長的墻的材料.
(1)當(dāng)矩形的長BC為多少米時,矩形花園的面積為300平方米;
(2)能否圍成480平方米的矩形花園,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形。
(1)求證AE=CG,并說明理由。
(2)連接AG,若AB=17,DG=13,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是⊙O的內(nèi)接正三角形,P為弧BC上一點(與點B、C不重合),
(1)如果點P是弧BC的中點,求證:PB+PC=PA;
(2)如果點P在弧BC上移動時,(1)的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應(yīng)為____________________________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2.
(1)求OD的長.
(2)求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程的兩個實數(shù)根的平方和為,那么的值是( )
A. 5 B. -1 C. 5或-1 D. -5或1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com