【題目】溫州市政府計劃投資百億元開發(fā)甌江口新區(qū),打造出一個“東方時尚島、海上新溫州”.為了解溫州市民對甌江口新區(qū)的關注情況,某學校數學興趣小組隨機采訪部分溫州市民,對采訪情況制作了統計圖表的一部分如下:
關注情況 | 頻數 | 頻率 |
A.高度關注 | m | 0.1 |
B.一般關注 | 100 | 0.5 |
C.不關注 | 30 | n |
D.不知道 | 50 | 0.25 |
(1)根據上述統計表可得此次采訪的人數為 人;m= ,n= ;
(2)根據以上信息補全條形統計圖;
(3)根據上述采訪結果,估計25000名溫州市民中高度關注甌江口新區(qū)的市民約 人.
科目:初中數學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證ΔADE∽ΔABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一個拋物線形的拱形橋洞,橋面離水面的距離為5.6米,橋洞離水面的最大高度為,跨度為,如圖所示,把它的圖形放在直角坐標系中.
(1)求這條拋物線所對應的函數關系式.
(2)如圖,在對稱軸右邊處,橋洞離橋面的高是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結論:①;②;③;④(為實數);⑤點,,是該拋物線上的點,則,正確的個數有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果三角形的兩個內角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,將△ABC繞點C逆時針旋轉至△A′B′C,使得點A′恰好落在AB上,A′B′與BC交于點D,則△A′CD的面積為( 。
A. B.5C.5D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,點P是邊BC上一動點,若△PAB與△PCD相似,且滿足條件的點P恰有2個,則m的值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角為45°,沿斜坡走3米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點A到點D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?(參考數據:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《國家學生體質健康標準》規(guī)定:體質測試成績達到90.0分及以上的為優(yōu)秀;達到80.0分至89.9分的為良好;達到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級學生體質健康狀況,從該校九年級學生中隨機抽取了10%的學生進行體質測試,測試結果如下面的統計表和扇形統計圖所示。
各等級學生平均分統計表
等級 | 優(yōu)秀 | 良好 | 及格 | 不及格 |
平均分 | 92.1 | 85.0 | 69.2 | 41.3 |
各等級學生人數分布扇形統計圖
(1)扇形統計圖中“不及格”所占的百分比是 ;
(2)計算所抽取的學生的測試成績的平均分;
(3)若所抽取的學生中所有不及格等級學生的總分恰好等于某一個良好等級學生的分數,請估計該九年級學生中約有多少人達到優(yōu)秀等級。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com