【題目】隨著裕安中學(xué)的規(guī)模逐漸擴(kuò)大,學(xué)生人數(shù)越來越多,學(xué)校打算購買校車20輛,現(xiàn)有A和B兩種型號校車,如果購買A型號校車6輛,B型號14輛,需要資金580萬元;如果購買A型號校車12輛,B型號校車8輛,需要資金760萬元.已知每種型號校車的座位數(shù)如表所示:
A型號 | B型號 | |
座位數(shù)(個/輛) | 60 | 30 |
經(jīng)預(yù)算,學(xué)校準(zhǔn)備購買設(shè)備的資金不高于500萬元.(每種型號至少購買1輛)
(1)每輛A型校車和B型校車各多少萬元?
(2)請問學(xué)校有幾種購買方案?且哪種方案的座位數(shù)最多,是多少?
【答案】(1)每輛A型校車50萬元,每輛B型校車20萬元;(2)共有3種購買方案;購買A型3輛,B型17輛時座位數(shù)最多,是690個.
【解析】(1)根據(jù)購買A型號校車6輛,B型號14輛,需要資金580萬元;購買A型號校車12輛,B型號校車8輛,需要資金760萬元.得出等量關(guān)系,列出二元一次方程組即可;(2) 根據(jù)學(xué)校打算購買校車20輛,而可用于購買設(shè)備的資金不高于500萬元,可得出不等式關(guān)系,求出即可.
(1)設(shè)每輛A型校車萬元,每輛B型校車萬元,則
,解得
答:每輛A型校車50萬元,每輛B型校車20萬元
(2)設(shè)學(xué)校購買A型校車a輛,則購買B型校車(20-a)輛
解得.又∵每種型號至少購買1輛
∴a可取1,2,3,有三種購買方案.
方案一:購買A型1輛,B型19輛,座位數(shù):1×60+19×30=630(個)
方案二:購買A型2輛,B型18輛,座位數(shù):2×60+18×30=660(個)
方案三:購買A型3輛,B型17輛,座位數(shù):3×60+17×30=690(個)
答:共有3種購買方案;購買A型3輛,B型17輛時座位數(shù)最多,是690個.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F(xiàn),H為CG的中點,連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN交⊙O于A,B兩點,AC是⊙O的直徑,DE與⊙O相切于點D,且DE⊥MN于點E. 求證:AD平分∠CAM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,對角線AC、BD相交于點O,E是CD中點,連結(jié)OE.過點C作CF∥BD交線段OE的延長線于點F,連結(jié)DF.求證:
(1)△ODE≌△FCE;
(2)四邊形ODFC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)過B點作BC⊥x軸,垂足為C,若P是反比例函數(shù)圖象上的一點,連接PC,PB,求當(dāng)△PCB的面積等于5時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C(0,﹣3),A點的坐標(biāo)為(﹣1,0).
(1)求二次函數(shù)的解析式;
(2)若點P是拋物線在第四象限上的一個動點,當(dāng)四邊形ABPC的面積最大時,
求點P的坐標(biāo),并求出四邊形ABPC的最大面積;
(3)若Q為拋物線對稱軸上一動點,直接寫出使△QBC為直角三角形的點Q的
坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD中,對角線AC、BD相交于點O,過點C作CE∥BD,過點D作DE∥AC,CE與DE相交于點E.
(1)求證:四邊形CODE是矩形;
(2)若AB=5,AC=6,求四邊形CODE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)2(y6)2-(y4)3; (2)(ab2c)2÷(ab3c2);
(3)(-x-y)(x-y)+(x+y)2 (4)利用公式計算803×797;
(5)計算:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com