【題目】如圖,,,.
(1)點到軸的距離為:______;
(2)的三邊長為:______,______,______;
(3)當點在軸上,且的面積為6時,點的坐標為:______.
【答案】(1)3;(2)6,,;(3),
【解析】
(1)點C的縱坐標的絕對值就是點C到x軸的距離解答;
(2)利用A,C,B的坐標分別得出各邊長即可;
(3)設點P的坐標為(0,y),根據△ABP的面積為6,A(2,3)、B(4,3),所以×6×|x3|=6,即|x3|=2,所以x=5或x=1,即可解答.
(1)∵C(1,3),
∴|3|=3,
∴點到軸的距離為3;
(2)∵A(2,3)、B(4,3)、C(1,3),
∴AB=4(2)=6,
AC=,BC=;
(3)(3)設點P的坐標為(0,y),
∵△ABP的面積為6,A(2,3)、B(4,3),
∴。。、×6×|y3|=6,
∴|y3|=2,
∴y=1或y=5,
∴P點的坐標為(0,1)或(0,5).
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象如圖所示,且關于的一元二次方程沒有實數根,有下列結論:①②③④其中,正確的是結論的個數是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是的直徑,點是延長線上一點,切于點,,是半徑的倍.
求的半徑;
如圖,弦,動點從出發(fā)沿直徑向運動的過程中,圖中陰影部分的面積是否發(fā)生變化,若發(fā)生變化,請你說明理由;若不發(fā)生變化,請你求出陰影部分的面積;
如圖,動點從出發(fā),在上按逆時針方向向運動.連接,過作的垂線,與的延長線交于點,當點運動到什么位置時,取到最大值?求此時動點所經過的弧長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲.乙兩種商品原來的單價和為100元,因市場變化,甲商品降價10%,乙商品提價40%,調價后兩種商品的單價和比原來的單價和提高了20%.若設甲.乙兩種商品原來的單價分別為x元.y元,則可列方程組為_________________;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,CE平分∠ACB,交AB于點E.
(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為20cm,∠ABC=120°.動點P、Q同時從點A出發(fā),其中P以4cm/s的速度,沿A→B→C的路線向點C運動;Q以2cm/s的速度,沿A→C的路線向點C運動.當P、Q到達終點C時,整個運動隨之結束,設運動時間為t秒.
(1)在點P、Q運動過程中,請判斷PQ與對角線AC的位置關系,并說明理由;
(2)若點Q關于菱形ABCD的對角線交點O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N.
①當t為何值時,點P、M、N在一直線上?
②當點P、M、N不在一直線上時,是否存在這樣的t,使得△PMN是以PN為一直角邊的直角三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點O,E為AC上一點,且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO;
(3)當AE=AC,AB=10時,求線段BO的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BC為⊙O的直徑,A為⊙O上的點,以BC、AB為邊作ABCD,⊙O交AD于點E,連結BE,點P為過點B的⊙O的切線上一點,連結PE,且滿足∠PEA=∠ABE.
(1)求證:PB=PE;
(2)若sin∠P=, 求的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com