【題目】某商店購(gòu)進(jìn)甲、乙兩種型號(hào)的滑板車,共花費(fèi)13000元,所購(gòu)進(jìn)甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進(jìn)價(jià)200元,乙型車每輛進(jìn)價(jià)400元,設(shè)商店購(gòu)進(jìn)乙型車x輛.
(1)商店有哪幾種購(gòu)車方案?
(2)若商店將購(gòu)進(jìn)的甲、乙兩種型號(hào)的滑板車全部售出,并且銷售甲型車每輛獲得利潤(rùn)70元,銷售乙型車每輛獲得利潤(rùn)50元,寫出此商店銷售這兩種滑板車所獲得的總利潤(rùn)y(元)與購(gòu)進(jìn)乙型車的輛數(shù)x(輛)之間的函數(shù)關(guān)系式?并求出商店購(gòu)進(jìn)乙型車多少輛時(shí)所獲得的利潤(rùn)最大?

【答案】
(1)

解:設(shè)商店購(gòu)進(jìn)乙型車x輛.則甲型是: 輛.

根據(jù)題意得: ,

解得:13≤x≤ ,

∵x是正整數(shù), 是正整數(shù).

∴x=13或14或15或16.

則有4種方案:方案一:乙13輛,甲39輛;

方案二:乙14輛,甲37輛;

方案三:乙15輛,甲35輛;

方案四:乙16輛,甲33輛.


(2)

解:y=70×+50x,

即y=﹣90x+4550.

∵﹣90<0,則y隨x的增大而減小,

∴當(dāng)x=13時(shí),y最大.

答:當(dāng)乙型車購(gòu)進(jìn)13輛時(shí)所獲得的利潤(rùn)最大


【解析】(1)設(shè)商店購(gòu)進(jìn)乙型車x輛.則甲型是: 輛.根據(jù)所購(gòu)進(jìn)甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍,即可得到關(guān)于x的不等式組,從而求得x的范圍,然后根據(jù)甲、乙的輛數(shù)都是正整數(shù),即可確定x的值,從而確定方案(2)根據(jù)總獲利=甲型的獲利+乙型的獲利,即可得到函數(shù)解析式,然后利用函數(shù)的性質(zhì)即可確定商店購(gòu)進(jìn)乙型車多少輛時(shí)所獲得的利潤(rùn)最大.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一元一次不等式組的應(yīng)用的相關(guān)知識(shí),掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初二年級(jí)數(shù)學(xué)考試,(滿分為100分,該班學(xué)生成績(jī)均不低于50分)作了統(tǒng)計(jì)分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:

分組

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~100.5

合計(jì)

頻數(shù)

2

a

20

16

4

50

頻率

0.04

0.16

0.40

0.32

b

1

(1)頻數(shù)、頻率分布表中a=  ,b=  ;(答案直接填在題中橫線上)

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)若該校八年級(jí)共有600名學(xué)生,且各個(gè)班級(jí)學(xué)生成績(jī)分布基本相同,請(qǐng)估計(jì)該校八年級(jí)上學(xué)期期末考試成績(jī)低于70分的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點(diǎn)C的坐標(biāo);
(2)求過A、B、C三點(diǎn)的拋物線的解析式和對(duì)稱軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);
(4)在拋物線對(duì)稱軸上,是否存在這樣的點(diǎn)M,使得△MPC(P為上述(3)問中使S最大時(shí)的點(diǎn))為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是學(xué)生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強(qiáng)體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步(小路的寬度不計(jì)).觀測(cè)得點(diǎn)B在點(diǎn)A的南偏東30°方向上,點(diǎn)C在點(diǎn)A的南偏東60°的方向上,點(diǎn)B在點(diǎn)C的北偏西75°方向上,AC間距離為400米.問小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是AC邊上一點(diǎn),AD=10,DC=8.以AD為直徑的⊙O與邊BC切于點(diǎn)E,且AB=BE

(1)求證:AB是⊙O的切線;
(2)過D點(diǎn)作DF∥BC交⊙O于點(diǎn)F,求線段DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(﹣1,0)、C(3,0),交y軸于點(diǎn)A,將線段OB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)M,過點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EF∥HG,EF=EH=1.直角梯形EFGH從點(diǎn)D開始,沿射線DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長(zhǎng)度單位/秒,在運(yùn)動(dòng)過程中腰FG與直線AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求此拋物線的解析式;
(2)當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)作點(diǎn)A關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)A′,直線HG與對(duì)稱軸交于點(diǎn)K,當(dāng)t為何值時(shí),以A、A′、G、K為頂點(diǎn)的四邊形為平行四邊形?請(qǐng)直接寫出符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點(diǎn)A,分別過頂點(diǎn)B,DDEa于點(diǎn)E,BFa于點(diǎn)F,若DE=4,BF=3,則EF的長(zhǎng)為(  )

A. 1 B. 5 C. 7 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點(diǎn)P1,P2,P3,…,P2018在反比例函數(shù)圖象上,它們的橫坐標(biāo)分別是,,…,,縱坐標(biāo)分別是1,3,5,…,共2018個(gè)連續(xù)奇數(shù),過點(diǎn)P1,P2,P3,…,P2018分別作軸的平行線,與的圖象交點(diǎn)依次是Q1),Q2,),Q3,),…,Q2018,),則=_________

查看答案和解析>>

同步練習(xí)冊(cè)答案