【題目】計算:

(1)(-5.5)+(-3.2)-(-2.5)-4.8

(2)-40-28-(-19)+(-24)

(3)

(4)

【答案】(1)-11;(2)-73;(3)-31;(4);

【解析】

(1)根據(jù)加法交換律計算即可;(2)根據(jù)有理數(shù)加減法運算法則計算即可;(3)根據(jù)有理數(shù)除法法則及乘法分配律計算即可;(4)根據(jù)有理數(shù)混合運算法則按照計算順序計算即可.

(1)原式=-5.5-3.2+2.5-4.8,

=-(3.2+4.8)-(5.5-2.5),

=-8-3,

=-11.

(2)原式=-40-28+19-24,

=-73.

(3)原式=

= (-60)- - (-60),

=-40+5+4,

=-31.

(4)原式=-1- (-7),

=-1+

=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知兩個分別含有30°,45°角的一副直角三角板.

(1)如圖1疊放在一起

OC恰好平分∠AOB,∠AOD= ;

若∠AOC=40°,∠BOD=

(2)如圖2疊放在一起,∠AOD=4∠BOC,試計算∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B兩個村莊的坐標分別是(2,1)和(6,3),一輛汽車從原點O出發(fā),沿x軸向右行駛.

(1)當汽車行駛到點M(___________)時離A村最近;

(2)當汽車行駛到點N(____________)時離B村最近;

(3)當汽車行駛到點P(___________)時離A、B兩村一樣近.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y= x2 x﹣ 與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;
(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當△PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;
(3)點G是線段CE的中點,將拋物線y= x2 x﹣ 沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(直接寫出結果):

(1)﹣2+5

(2)﹣17+(﹣3)

(3)(﹣10)﹣(-6)

(4)(﹣1)×(﹣12)

(5)﹣2×(﹣3)2

(6)﹣1÷(﹣5)

(7)﹣1200+(﹣1)200

(8)﹣0.125×(﹣2)3

(9)|﹣|

(10)(-3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點A(2,﹣6),且與反比例函數(shù)y=﹣ 的圖象交于點B(a,4)
(1)求一次函數(shù)的解析式;
(2)將直線AB向上平移10個單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC=30m,從A點測得D點的俯角α為30°,測得C點的俯角β為60°,求這兩座建筑物的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1

1按要求作圖:

①△ABC關于x軸對稱的圖形A1B1C1;

A1B1C1向右平移7個單位得到A2B2C2

2回答下列問題:

①△A2B2C2中頂點B2坐標為

若Pa,bABC邊上一點,則按照1、作圖,點P對應的點P2的坐標為

查看答案和解析>>

同步練習冊答案