【題目】如圖,在RtABC中,∠C=90°,以頂點(diǎn)B為圓心,適當(dāng)長度為半徑畫弧,分別交AB,BC于點(diǎn)M,N,再分別以點(diǎn)M,N為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn)P,作射線BP交AC于點(diǎn)D.當(dāng)∠A=30°時(shí),小敏正確求得:=1:2.寫出兩條小敏求解中用到的數(shù)學(xué)依據(jù):__________________.
【答案】答案不唯一,如直角三角形30度角所對(duì)直角邊等于斜邊的一半和等邊對(duì)等角
【解析】
由已知條件得到:=1:2,寫出其中的2條依據(jù)即可.
由作法得BD平分∠ABC,
∵∠C=90°,∠A=30°,
∴∠ABC=60°,(三角形的內(nèi)角和為180)
∴∠ABD=∠CBD=30°(角平分線的性質(zhì)),
∴DA=DB(等角對(duì)等邊),
在Rt△BCD中,BD=2CD,(直角三角形30度角所對(duì)直角邊等于斜邊的一半)
∴AD=2CD(等量代換),
∴:=1:2.
故答案為:答案不唯一,如直角三角形30度角所對(duì)直角邊等于斜邊的一半和等邊對(duì)等角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(k>0,x>0)的圖象與等邊三角形OAB的邊OA,AB分別交于點(diǎn)M,N,且OM=2MA,若AB=3,那么點(diǎn)N的橫坐標(biāo)為( )
A.B.C.4D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形的頂點(diǎn)分別在,軸上,且.將正方形繞原點(diǎn)順時(shí)針旋轉(zhuǎn),且,得到正方形,再將正方繞原點(diǎn)順時(shí)針旋轉(zhuǎn),且,得到正方形,以此規(guī)律,得到正方形,則點(diǎn)的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)為了方便游客登上山頂,計(jì)劃從山底A點(diǎn)到山頂C點(diǎn)修建觀光纜車,此時(shí)從A點(diǎn)觀測(cè)C點(diǎn)的仰角為45度;施工組經(jīng)過實(shí)地勘察后,為了安全,決定將觀光纜車的鋼索改為AD、CD兩段,D點(diǎn)是半山腰上距離地面AB30米的一個(gè)支點(diǎn),從A點(diǎn)觀測(cè)D點(diǎn)的仰角為30°.從D點(diǎn)觀測(cè)山頂C點(diǎn)的仰角為75°,請(qǐng)你通過自己學(xué)過的知識(shí)來求出這座山的高度BC約為多少米.(結(jié)果保留整數(shù).可能用到的數(shù)據(jù):≈1.73.sin75°≈0.96.cos75°≈0.26.tan75°≈3.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小邱同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),研究函數(shù)y=的圖象與性質(zhì).通過分析,該函數(shù)y與自變量x的幾組對(duì)應(yīng)值如下表,并畫出了部分函數(shù)圖象如圖所示.
x | 1 |
|
|
| 3 | 4 | 5 | 6 | … |
y | ﹣1 | ﹣2 | ﹣3.4 | ﹣7.5 | 2.4 | 1.4 | 1 | 0.8 | … |
(1)函數(shù)y=的自變量x的取值范圍是 ;
(2)在圖中補(bǔ)全當(dāng)1≤x<2的函數(shù)圖象;
(3)觀察圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)若關(guān)于x的方程=x+b有兩個(gè)不相等的實(shí)數(shù)根,結(jié)合圖象,可知實(shí)數(shù)b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AB=AC,點(diǎn)D為BC邊的中點(diǎn),點(diǎn)F是AB邊上一點(diǎn),點(diǎn)E在線段DF的延長線上,∠BAE=∠BDF,點(diǎn)M在線段DF上,∠ABE=∠DBM.
(1)如圖1,當(dāng)∠ABC=45°時(shí),求證:AE=MD;
(2)如圖2,當(dāng)∠ABC=60°時(shí),
①直接寫出線段AE,MD之間的數(shù)量關(guān)系;
②延長BM到P,使MP=BM,連接CP,若AB=7,AE=,探求sin∠PCB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),經(jīng)過點(diǎn)的直線:與軸交于點(diǎn),與拋物線的另一個(gè)交點(diǎn)為,且.
(1)直接寫出點(diǎn)的坐標(biāo),并用含的式子表示直線的函數(shù)表達(dá)式(其中、用含的式子表示).
(2)點(diǎn)為直線下方拋物線上一點(diǎn),當(dāng)的面積的最大值為時(shí),求拋物線的函數(shù)表達(dá)式;
(3)設(shè)點(diǎn)是拋物線對(duì)稱軸上的一點(diǎn),點(diǎn)在拋物線上,以點(diǎn)、、、為頂點(diǎn)的四邊形能否為矩形?若能,求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每到春夏交替時(shí)節(jié),楊樹的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(調(diào)查問卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖:
調(diào)查問卷
治理?xiàng)钚酰耗x哪一項(xiàng)? (每人只選一項(xiàng))
A.減少楊樹新增面積,控制楊樹每年的栽種量;
B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹;
C.選育無絮楊品種,并推廣種植;
D.對(duì)楊樹注射生物干擾素,避免產(chǎn)生飛絮;
E.其他.
根據(jù)以上信息,解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,求扇形的圓心角度數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有萬人,請(qǐng)估計(jì)贊同“選育無絮楊品種,并推廣種植”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模具廠計(jì)劃生產(chǎn)面積為4,周長為m的矩形模具.對(duì)于m的取值范圍,小亮已經(jīng)能用“代數(shù)”的方法解決,現(xiàn)在他又嘗試從“圖形”的角度進(jìn)行探究,過程如下:
(1)建立函數(shù)模型
設(shè)矩形相鄰兩邊的長分別為x,y,由矩形的面積為4,得xy=4,即;由周長為m,得2(x+y)=m,即y=-x+.滿足要求的(x,y)應(yīng)是兩個(gè)函數(shù)圖象在第 象限內(nèi)交點(diǎn)的坐標(biāo).
(2)畫出函數(shù)圖象
函數(shù)(x>0)的圖象如圖所示,而函數(shù)y=-x+的圖象可由直線y=-x平移得到.請(qǐng)?jiān)谕恢苯亲鴺?biāo)系中直接畫出直線y=-x.
(3)平移直線y=x,觀察函數(shù)圖象
在直線平移過程中,交點(diǎn)個(gè)數(shù)有哪些情況?請(qǐng)寫出交點(diǎn)個(gè)數(shù)及對(duì)應(yīng)的周長m的取值范圍.
(4)得出結(jié)論 若能生產(chǎn)出面積為4的矩形模具,則周長m的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com