【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2.照此規(guī)律作下去,則S2017=____.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為( )
A. 2B. 8C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數(shù)是第一批的2倍,但進價比第一批每件多了20元.
(1)第一批臍橙每件進價多少元?
(2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,拋物線y=ax2+bx﹣1經(jīng)過A(﹣1,0),B(2,0)兩點,交y軸于點C.
(1)求拋物線的表達式和直線BC的表達式.
(2)如圖乙,點P為在第四象限內拋物線上的一個動點,過點P作x軸的垂線PE交直線BC于點D.
①在點P運動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
②是否存在點P使得以點O,C,D為頂點的三角形是等腰三角形?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣6x+4的頂點A在直線y=kx﹣2上.
(1)求直線的函數(shù)表達式;
(2)現(xiàn)將拋物線沿該直線方向進行平移,平移后的拋物線的頂點為A′,與直線的另一交點為B′,與x軸的右交點為C(點C不與點A′重合),連接B′C、A′C.
。┤鐖D,在平移過程中,當點B′在第四象限且△A′B′C的面積為60時,求平移的距離AA′的長;
ⅱ)在平移過程中,當△A′B′C是以A′B′為一條直角邊的直角三角形時,求出所有滿足條件的點A′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD邊長為4,M、N分別是BC、CD上的兩個動點,當M點在BC上運動時,保持AM和MN垂直,
(1)證明:Rt△ABM ∽Rt△MCN;
(2)設BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關系式;當M點運動到什么位置時,四邊形ABCN的面積最大,并求出最大面積;
(3)當M點運動到什么位置時Rt△ABM∽Rt△AMN,求此時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個傾斜角為 的斜坡,將一個小球從斜坡的坡腳 O 點處拋出,落在 A點處,小球的運動路線可以用拋物線來刻畫,已知 tan
(1)求拋物線表達式及點 A 的坐標.
(2)求小球在運動過程中離斜坡坡面 OA 的最大距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】連接多邊形任意兩個不相鄰頂點的線段稱為多邊形的對角線.
(1)四、五、六、n邊形對角線條數(shù)分別為 、 、 、 .
(2)多邊形可以有12條對角線嗎?如果可以,求多邊形的邊數(shù);如果不可以,請說明理由.
(3)若一個n邊形的內角和為1800°,求它對角線的條數(shù).
(4)已知k-1邊形的對角線條數(shù)是,求k+1邊形的對角線條數(shù)(k>4).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著北京申辦冬奧會的成功,愈來愈多的同學開始關注我國的冰雪體育項目. 小健從新聞中了解到:在2018年平昌冬奧會的短道速滑男子500米決賽中,中國選手武大靖以39秒584的成績打破世界紀錄,收獲中國男子短道速滑隊在冬奧會上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績再破世界紀錄. 于是小健對同學們說:“2022年北京冬奧會上武大靖再獲金牌的可能性大小是.”你認為小健的說法_________(填“合理”或“不合理”),理由是__________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com