【題目】如圖,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是的中點,AB和DC的延長線交于⊙O外一點E.
求證:(1)∠EBC=∠D;
(2)BC=EC.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)根據(jù)圓內(nèi)接四邊形的性質可知:∠ABC+∠D=180°,而∠ABC+∠EBC=180°,從而可以證明∠EBC=∠D;
(2)連接AC,先根據(jù)直徑所對的角是直角,圓內(nèi)接四邊形的性質和等弧所對的圓周角相等得到∠E=∠D,∠EBC=∠E,從而根據(jù)等角對等邊可證BC=EC.
證明:(1)∵四邊形ABCD內(nèi)接于⊙O,
∴∠ABC+∠D=180°.
又∵∠ABC+∠EBC=180°,
∴∠EBC=∠D.
(2)如圖,連結AC.
∵AD是⊙O的直徑,
∴∠ACD=90°,
∵C是的中點,∴∠EAC=∠CAD,
而∠EAC與∠E互余,∠CAD與∠D互余,
∴∠E=∠D,由(1)得∠EBC=∠D,
∴∠EBC=∠E,∴BC=EC.
科目:初中數(shù)學 來源: 題型:
【題目】下面是圓圓設計的“作等腰三角形一腰上的高線”的尺規(guī)作圖過程 .
已知:△,.
求作:邊上的高線.
作法:如圖,
①以點為圓心,為半徑畫弧,交于點和點;
②分別以點和點為圓心,大于長為半徑畫弧,兩弧相交于點;
③作射線交于點.
所以線段就是所求作的邊上的高線.
根據(jù)圓圓設計的尺規(guī)作圖過程,完成下列問題:
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面證明.
證明:∵,
∴點在線段的垂直平分線上(__________) (填推理的依據(jù)).
∵__________=__________,
∴點在線段的垂直平分線上.
∴是線段的垂直平分線.
∴⊥.
∴線段就是邊上的高線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,BE平分∠ABC,DE∥BC.
(1)試猜想△BDE的形狀,并說明理由;
(2)若∠A=35°,∠C=70°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,將△ABC繞點B順時針旋轉α度,得到△A1BC1,A1B交AC于E,A1C1分別交AC、BC于點D、F,下列結論:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正確的有
A. ①②④ B. ②③④ C. ①②⑤ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點O,直角∠MPN的頂點P與點O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是_____.
(1)EF=OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=;(4)OGBD=AE2+CF2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬AB為12米,拱高CD為4米.
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬5米,船艙頂部為正方形并高出水面3.6米的貨船要經(jīng)過這里,此時貨船能順利通過這座拱橋嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結EC
⑴求∠ECD的度數(shù);
⑵若CE=5,求CB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,…不斷重復上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計口袋中白球大約有( )
A. 10個 B. 12 個 C. 15 個 D. 18個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△AOB中,∠O=90°,AO=18cm,BO=30cm,動點M從點A開始沿邊AO以1cm/s的速度向終點O移動,動點N從點O開始沿邊OB以2cm/s的速度向終點B移動,一個點到達終點時,另一個點也停止運動.如果M、N兩點分別從A、O兩點同時出發(fā),設運動時間為ts時四邊形ABNM的面積為Scm2.
(1)求S關于t的函數(shù)關系式,并直接寫出t的取值范圍;
(2)判斷S有最大值還是有最小值,用配方法求出這個值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com