【題目】如圖,在矩形ABCD中,ECD邊的中點(diǎn),將繞點(diǎn)E順時(shí)針旋轉(zhuǎn),點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過點(diǎn)EBC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論:;;;點(diǎn)N的外心.其中正確的個(gè)數(shù)為  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】分析:

(1)由旋轉(zhuǎn)的性質(zhì)易得AD=FC,AE=FE,結(jié)合ME⊥AF可得AM=MF,結(jié)合MF=MC+CF即可得到結(jié)論成立;(2)假設(shè)AM=DE+BM成立則結(jié)合(1)可推得CE=2MC,但由題中條件不能得到CE=2MC一定成立,故結(jié)論不成立;(3)由已知條件證△ADE∽△ECM,結(jié)合DE=CE即可證得結(jié)論成立;(4)過點(diǎn)MMF⊥AD于點(diǎn)F,連接BFAM于點(diǎn)Q,則易證點(diǎn)QAM的中點(diǎn),由此可得點(diǎn)N不是AM的中點(diǎn),從而可得結(jié)論不成立;綜合(1)--(4)即可得到所求答案.

詳解

(1)∵△CEF是由△DEA繞點(diǎn)E旋轉(zhuǎn)180°得到的,

∴AD=FC,AE=FE,DE=CE,

∵M(jìn)E⊥AF,

∴AM=MF,

∵M(jìn)F=MC+CF,

∴AM=AD+MC,即結(jié)論成立;

(2)假設(shè)AM=DE+BM成立,

(1)可知AM=AD+MC,

∴AD+MC=DE+BM,

∵AD=BC=BM+MC,DE=CE,

∴BM+MC+MC=BM+CE,

∴2MC=CE,

由題中條件不能確定CE=2MC成立,

∴AM=DE+BM不一定成立,故結(jié)論不成立;

(3)∵M(jìn)E⊥AF,四邊形ABCD是矩形,

∴∠ADE=∠MEF=∠ECM=90°,

∴∠MEC+∠EMC=90°,∠EMC+∠F=90°,

∴∠MEC=∠F,

∵AD∥BC,

∴∠DAE=∠F,

∴∠DAE=∠MEC,

∴△ADE∽△ECM,

∴AD:EC=DE:CM,

∴EC·DE=AD·CM,

∵EC=DE,

∴DE2=AD·CM,故結(jié)論成立;

(4)如下圖,過點(diǎn)MMF⊥AD于點(diǎn)F,連接BFAM于點(diǎn)Q,

∴∠ABM=∠BAF=∠AFM=90°,

∴四邊形ABMF是矩形,

點(diǎn)QAM的中點(diǎn),

點(diǎn)Q是△ABM的外心,

點(diǎn)Q與點(diǎn)N不重合,

點(diǎn)N不是△ABM的外心,故結(jié)論不成立.

綜上所述,上述4個(gè)結(jié)論中,成立的是①③,共2個(gè).

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來(lái)越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.

⑴ 本次調(diào)查的學(xué)生共有   人,“了解較少”的學(xué)生人數(shù)所占的百分比為   

⑵ 補(bǔ)全條形統(tǒng)計(jì)圖;

⑶ 若該校共有1300名學(xué)生,請(qǐng)根據(jù)統(tǒng)計(jì)結(jié)果估算該!安涣私狻钡膶W(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,點(diǎn)D是邊BC上的點(diǎn)(與B,C兩點(diǎn)不重合),過點(diǎn)D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點(diǎn),下列說(shuō)法正確的是( 。

A. 若AD⊥BC,則四邊形AEDF是矩形

B. 若AD垂直平分BC,則四邊形AEDF是矩形

C. 若BD=CD,則四邊形AEDF是菱形

D. 若AD平分∠BAC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某開發(fā)公司生產(chǎn)的960件新產(chǎn)品需要精加工后才能投放市場(chǎng),F(xiàn)有甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲廠單獨(dú)加工這批產(chǎn)品比乙工廠單獨(dú)加工完這批產(chǎn)品多用20,而甲工廠每天加工的數(shù)量是乙工廠每天加工數(shù)量的,甲、乙兩個(gè)工廠每天各能加工多少個(gè)新產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號(hào)里:﹣(﹣2),-3,,﹣0.101001,﹣|2|,,0.2020020002…,-,0.

負(fù)整數(shù)集合:{____________…}.

負(fù)分?jǐn)?shù)集合:{____________…}.

無(wú)理數(shù)集合:{____________…}.

非負(fù)數(shù)集合:{____________…}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(操作發(fā)現(xiàn))如圖1,在邊長(zhǎng)為x的正方形內(nèi)剪去邊長(zhǎng)為y的小正方形,剩下的圖形面積可以表示為 ;把剩下的這個(gè)圖形沿圖2的虛線剪開,并拼成圖3的長(zhǎng)方形,可得長(zhǎng)為 、寬為 ,那么這個(gè)長(zhǎng)方形的面積可以表示為 ,不同的方法求得的面積應(yīng)相等,由此可以得到一個(gè)等式.

(數(shù)學(xué)應(yīng)用)利用得到的等式解決以下問題:

1

2

(思維拓展)(3)利用得到的等式計(jì)算

解:原式=

請(qǐng)你把接下來(lái)的計(jì)算過程補(bǔ)充完整.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意正實(shí)數(shù)a ,b ,∵,∴

,只有a=b時(shí),等號(hào)成立.

結(jié)論:在(均為正實(shí)數(shù))中,若為定值p,則,只有當(dāng)a=b時(shí),有最小值

根據(jù)上述內(nèi)容,回答下列問題:

1)若n0,只有當(dāng)n= ______時(shí),有最小值;

2)下面一組圖是由4個(gè)全等的矩形圍成的大正方形,中空部分是小正方形,矩形的長(zhǎng)和寬分別為ab ,試?yán)么笳叫闻c四個(gè)矩形的面積的大小關(guān)系,驗(yàn)證,并指出等號(hào)成立時(shí)的條件;

......

3)如下圖,已知A(3,0),B(0,-4),點(diǎn)P是第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),過P點(diǎn)向坐標(biāo)軸作垂線,分別交軸和軸于C,D兩點(diǎn),矩形OCPD的面積始終為12,求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,⊙OAC的中點(diǎn)D,DE⊥BC,交BC于點(diǎn)E

1)求證:DE⊙O的切線;

2)如果CD=8,CE=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊A1C1C2的周長(zhǎng)為1,作C1D1A1C2D1,在C1C2的延長(zhǎng)線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊A2C2C3;作C2D2A2C3D2,在C2C3的延長(zhǎng)線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊A3C3C4;且點(diǎn)A1,A2,A3,都在直線C1C2同側(cè),如此下去,則A1C1C2,A2C2C3,A3C3C4,AnCnCn+1的周長(zhǎng)和為______.(n≥2,且n為整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案