【題目】自開展“學生每天鍛煉1小時”活動后,我市某中學根據(jù)學校實際情況,決定開設A:毽子,B:籃球,C:跑步,D:跳繩四種運動項目.為了了解學生最喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖統(tǒng)計圖.請結合圖中信息解答下列問題:

(1)該校本次調查中,共調查了多少名學生?

(2)請將兩個統(tǒng)計圖補充完整;

(3)在本次調查的學生中隨機抽取1人,他喜歡“跑步”的概率有多大?

【答案】(1)100名(2)見解析(3)

解:(1)該校本次一共調查了42÷42%=100名學生。

(2)喜歡跑步的人數(shù)=100-42-12-26=20(人),

喜歡跑步的人數(shù)占被調查學生數(shù)的百分比=100%=20%,

將兩個統(tǒng)計圖補充完整如下:

(3)在本次調查中隨機抽取一名學生,他喜歡跑步的概率=。

解析(1)結合條形統(tǒng)計圖和扇形統(tǒng)計圖,利用A組頻數(shù)42除以A組頻率42%,即可得到該校本次調查中,共調查了多少名學生。

(2)利用(1)中所求人數(shù),減去A、B、D組的頻數(shù)即可;C組頻數(shù)除以100即可得到C組頻率,從而將兩個統(tǒng)計圖補充完整。

(3)格局概率公式直接解答。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形AOB中,OA=10,∠AOB=36°.若將此扇形繞點B順時針旋轉,得一新扇形A′O′B,其中A點在O′B上,則點O的運動路徑長為cm.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(感知)如圖①,ABCD,點E在直線ABCD之間,連結AE、BE,試說明∠BEE+DCE=AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學式):

解:如圖①,過點EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+FGC+DCE=360°;

(應用)點E、F、G在直線ABCD之間,連結AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是(
A.a3÷a2=a3?a2
B.
C.2a2+a2=3a4
D.(a﹣b)2=a2﹣b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知△ABC為直角三角形,分別以直角邊AC、BC為直徑作半圓AmCBnC,以AB為直徑作半圓ACB,記兩個月牙形陰影部分的面積之和為S1,△ABC的面積為S2,則S1S2的大小關系為( 。

A. S1>S2 B. S1<S2 C. S1=S2 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:

銷售單價(元)

x

銷售量y(件)

銷售玩具獲得利潤w(元)


(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某校為了創(chuàng)建書香校園,去年購進一批圖書.經(jīng)了解,科普書的單價比文學書的單價多4元,用12000元購進的科普書與用8000元購進的文學書本數(shù)相等.今年文學書和科普書的單價與去年相比保持不變,該校打算用10000元再購進一批文學書和科普書,問購進文學書550本后至多還能購進多少本科普書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學做一道數(shù)學題已知兩個多項式AB,B=3x2y-5xyx+7,試求AB,這位同學把AB看成AB,結果求出的答案為6x2y+12xy-2x-9.

(1)請你替這位同學求出的正確答案

(2)x取任意數(shù)值,A-3B的值是一個定值,y的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一圓形水管的截面圖,已知⊙O的半徑OA=13,水面寬AB=24,則水的深度CD是

查看答案和解析>>

同步練習冊答案