【題目】作圖題:如圖在矩形ABCD中,已知AD=10AB=6,用直尺和圓規(guī)在AD上找一點(diǎn)E(保留作圖痕跡),使EC平分∠BED,并求出tanBEC的值.

【答案】作圖見解析,3

【解析】

根據(jù)角平分線的性質(zhì),要使EC平分∠BED,則CBE的距離一定等于CD,故以C點(diǎn)為圓心,CD長為半徑做圓C,然后過點(diǎn)B做圓C的切線并延長,與AD的交點(diǎn)即為點(diǎn)E,然后利用勾股定理,設(shè)ED=EG=,可以求得ED的長,而∠BEC=DEC,在直角中,即可求得tanBEC的值.

解:以點(diǎn)C為圓心,CD長為半徑畫圓,作的垂直平分線,然后作以為直徑的圓,與圓交于點(diǎn),即為圓的切線,并延長與AD相交,交點(diǎn)即為所求點(diǎn)E,

由作圖可知,ED=EG,CG=CD=6CGBE,而BC=10

Rt中,

設(shè)ED=EG=,則AE=

Rt中,有,即:,

解得:,即ED=EG=2

∵ EC為角平分線,則∠BEC=DEC,

中,tanBEC=tanDEC=

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC4,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)EAD邊上一動(dòng)點(diǎn),將△AEO沿直線EO折疊,點(diǎn)A落在點(diǎn)F處,線段EF,OD相交于點(diǎn)G.若△DEG是直角三角形,則線段DE的長為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),一次函數(shù),

有下列結(jié)論:

①當(dāng)時(shí),的增大而減小;

②二次函數(shù)的圖象與軸交點(diǎn)的坐標(biāo)為

③當(dāng)時(shí),;

④在實(shí)數(shù)范圍內(nèi),對(duì)于的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值均成立,則.

其中,正確結(jié)論的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為應(yīng)對(duì)新型冠狀病毒,某藥店老板到廠家選購、兩種品牌的醫(yī)用外科口罩,品牌口罩每個(gè)進(jìn)價(jià)比品牌口罩每個(gè)進(jìn)價(jià)多0.7元,若用7200元購進(jìn)品牌的數(shù)量是用5000元購進(jìn)品牌數(shù)量的2倍.

1)求兩種品牌的口罩每個(gè)進(jìn)價(jià)分別為多少元?

2)若品牌口罩每個(gè)售價(jià)為2.1元,品牌口罩每個(gè)售價(jià)為3元,藥店老板決定一次性購進(jìn)、兩種品牌口罩共8000個(gè),在這批口罩全部出售后所獲利潤不低于3000元.則最少購進(jìn)品牌口罩多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將背面是質(zhì)地、圖案完全相同,正面分別標(biāo)有數(shù)字-2,-1,1,2的四張卡片洗勻后,背面朝上放置在桌面上.隨機(jī)抽取一張卡片,將抽取的第一張卡片上的數(shù)字作為橫坐標(biāo),第二次再從剩余的三張卡片中隨機(jī)抽取一張卡片,將抽取的第二張卡片上的數(shù)字作為縱坐標(biāo).

1)請(qǐng)用列表法或畫樹狀圖法求出所有可能的點(diǎn)的坐標(biāo);

2)求出點(diǎn)在x軸上方的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線y=ax2+bx+ca0)的頂點(diǎn)為As,t)(其中s0).

1)若拋物線經(jīng)過(2,7)和(-337)兩點(diǎn),且s=1

①求拋物線的解析式;

②若n1,設(shè)點(diǎn)Mn,y1),Nn+1,y2)在拋物線上,比較y1,y2的大小關(guān)系,并說明理由;

2)若a=2c=-2,直線y=2x+m與拋物線y=ax2+bx+c的交于點(diǎn)P和點(diǎn)Q,點(diǎn)P的橫坐標(biāo)為h,點(diǎn)Q的橫坐標(biāo)為h+3,求出bh的函數(shù)關(guān)系式;

3)若點(diǎn)A在拋物線y=上,且2s3時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)問題發(fā)現(xiàn)

如圖1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,連接AC,BD交于點(diǎn)M.填空:

的值為   ;

②∠AMB的度數(shù)為   

(2)類比探究

如圖2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,連接ACBD的延長線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;

(3)拓展延伸

在(2)的條件下,將OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)公民的節(jié)約意識(shí),合理利用天然氣費(fèi)源,某市自11日起對(duì)市區(qū)民用管道天然氣價(jià)格進(jìn)行調(diào)整,實(shí)行階梯式氣價(jià),調(diào)能后的收費(fèi)價(jià)格如表所示:

每月用氣量

單價(jià)(/m3)

不超出75m3的部分

2

超出75 m3不超過125 m3的部分

a

超出125 m2的部分

a0.5

(1)若某戶3月份用氣量為60 m3,則應(yīng)交費(fèi)多少元?

(2)調(diào)價(jià)后每月支付燃?xì)赓M(fèi)用y()與每月用氣量x(m3)的函數(shù)關(guān)系如圖所示,求a的值及線段AB對(duì)應(yīng)的一次函數(shù)的表達(dá)式;

(3)求射線BC對(duì)應(yīng)的一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為矩形,四邊形為菱形.

求證:;

試探究:當(dāng)矩形邊長滿足什么關(guān)系時(shí),菱形為正方形?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案