【題目】(1);

(2)

(3)先化簡,再求值,其中互為相反數(shù).

【答案】(1) (2)8(3)-6

【解析】

(1)原式先計算乘方運算和絕對值,再計算乘除運算,最后算加減運算即可得到結(jié)果;

(2)原式利用除法法則變形,再利用乘法分配律計算即可得到結(jié)果;

(3)原式去括號合并得到最簡結(jié)果,根據(jù)已知條件求出a、b的值,再把ab的值代入最簡結(jié)果,計算即可求出值.

解:(1)

=-8-0.5××(2-9)

=-8-0.5××(-7)

=-8+

=-;

(2)

=

=(

=12+16-20

=8;

(3),

=-3ab+3a2-[2b2-5ab+a2-2ab]

=-3ab+3a2-2b2+5ab-a2+2ab

=2a2-2b2+4ab

互為相反數(shù).

+=0

=0,=0

=1,=-2

∴原式=4+2()=-6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,點DBC中點,ANABC外角∠CAM的平分線,CEAN,垂足為點E.求證:四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為( 。

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知E、F分別是ABCD的邊BC、AD上的點,且BE=DF.

(1)求證:四邊形AECF是平行四邊形;

(2)若BAC=90°,AC平分EAF,且BC=8cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC和△ADE都是等腰直角三角形, BAC=DAE=90°.

(1)如圖1,D、EAB、AC,BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?(直接寫出答案)

(2)如圖2,D在△ABC內(nèi)部, E在△ABC外部,連結(jié)BD, CE, BD,CE滿足怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.

(3)如圖3,D,E都在△ABC外部,連結(jié)BD, CE, CD, EB,BD, CE相交于H. BD=,求四邊形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,某學(xué)習(xí)小組對有一內(nèi)角(∠BAD)為120°的平行四邊形ABCD,將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內(nèi)旋轉(zhuǎn),且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究:在(2)的條件下,學(xué)習(xí)小組某成員探究發(fā)現(xiàn)AE+2AF= AC,試判斷結(jié)論是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交 于點E,以點O為圓心,OC的長為半徑作 交OB于點D.若OA=2,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在以AB為直徑的半圓上,AB=4 ,AC=4,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE,DF交EC的延長線于點F,當點D從點A運動到點B時,線段EF掃過的面積是

查看答案和解析>>

同步練習(xí)冊答案