【題目】△ABC和△ADE都是等腰直角三角形, ∠BAC=∠DAE=90°.
(1)如圖1,點(diǎn)D、E在AB、AC上,則BD,CE滿(mǎn)足怎樣的數(shù)量關(guān)系和位置關(guān)系?(直接寫(xiě)出答案)
(2)如圖2,點(diǎn)D在△ABC內(nèi)部, 點(diǎn)E在△ABC外部,連結(jié)BD, CE, 則BD,CE滿(mǎn)足怎樣的數(shù)量關(guān)系和位置關(guān)系?請(qǐng)說(shuō)明理由.
(3)如圖3,點(diǎn)D,E都在△ABC外部,連結(jié)BD, CE, CD, EB,BD, 與CE相交于H點(diǎn). 若BD=,求四邊形BCDE的面積.
【答案】(1)BD=CE且BD⊥CE;(2)BD=CE且BD⊥CE;(3).
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)解答;
(2)延長(zhǎng)BD,分別交AC、CE于F、G,證明△ABD≌△ACE,根據(jù)全等三角形的性質(zhì)、垂直的定義解答;
(3)根據(jù)S四邊形BCDE=S△BCE+S△DCE計(jì)算,求出四邊形BCDE的面積
(1)∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,
∴BD=CE,BD⊥CE;
(2)
BD=CE,BD⊥CE,
理由如下:延長(zhǎng)BD,分別交AC、CE于F.G,
∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC∠DAC,∠CAE=∠DAE∠DAC
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AFB=∠GFC,
∴∠CGF=∠BAF=90°,即BD⊥CE;
(3)∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,
∴∠BAD=∠CAE,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠AOB=∠FOC,
∴∠BFC=∠BAC=90°,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)木箱中裝有卡片共50張,這些卡片共有三種,它們分別標(biāo)有1、2、3的字樣,除此之外其他都相同,其中標(biāo)有數(shù)字2的卡片的張數(shù)是標(biāo)有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字1卡片的概率是 .
(1)求木箱中裝有標(biāo)1的卡片張數(shù);
(2)求從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字3的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB邊上一動(dòng)點(diǎn),PD⊥AC于點(diǎn)D,點(diǎn)E在P的右側(cè),且PE=1,連結(jié)CE.P從點(diǎn)A出發(fā),沿AB方向運(yùn)動(dòng),當(dāng)E到達(dá)點(diǎn)B時(shí),P停止運(yùn)動(dòng).在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積S1+S2的大小變化情況是( )
A.一直減小
B.一直不變
C.先增大后減小
D.先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)前夕,小東的父母準(zhǔn)備購(gòu)買(mǎi)若干個(gè)粽子和咸鴨蛋(每個(gè)粽子的價(jià)格相同,每個(gè)咸鴨蛋的價(jià)格相同).已知粽子的價(jià)格比咸鴨蛋的價(jià)格貴1.8元,花30元購(gòu)買(mǎi)粽子的個(gè)數(shù)與花12元購(gòu)買(mǎi)咸鴨蛋的個(gè)數(shù)相同,求粽子與咸鴨蛋的價(jià)格各多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新化到長(zhǎng)沙的距離約為200km,小王開(kāi)著小轎車(chē),張師傅開(kāi)著大貨車(chē)都從新化去長(zhǎng)沙,小王比張師傅晚出發(fā)20分鐘,最后兩車(chē)同時(shí)到達(dá)長(zhǎng)沙.已知小轎車(chē)的速度是大貨車(chē)速度的1.2倍,求小轎車(chē)和大貨車(chē)的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的數(shù)陣是由88個(gè)偶數(shù)組成:
(1)觀察數(shù)陣中平行四邊形框內(nèi)的四個(gè)數(shù)之間的關(guān)系,在數(shù)陣中任意作一個(gè)相同的平行四邊形框圈出四個(gè)數(shù),設(shè)其中最小的數(shù)為x,那么其他三個(gè)數(shù)怎樣表示?
(2)甲同學(xué)這樣圈出的四個(gè)數(shù)的和為432,你能求出這四個(gè)數(shù)嗎?
(3)乙同學(xué)想用這樣的框圈出和為172的四個(gè)數(shù),可能嗎?
(4)你能用這樣的框圈出和為352的四個(gè)數(shù)嗎?若能,請(qǐng)寫(xiě)出這四個(gè)數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線(xiàn)AB上一點(diǎn)O為端點(diǎn)作射線(xiàn) OC,使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線(xiàn)OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,請(qǐng)說(shuō)明OD所在射線(xiàn)是∠BOC的平分線(xiàn);
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD= ∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠BAC的平分線(xiàn)與BC的垂直平分線(xiàn)DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com